Skip to main content
Log in

Diel Variation in Flower Scent Reveals Poor Consistency of Diurnal and Nocturnal Pollination Syndromes in Sileneae

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The composition of flower scent and the timing of emission are crucial for chemical communication between plants and their pollinators; hence, they are key traits for the characterization of pollination syndromes. In many plants, however, plants are assigned to a syndrome based on inexpensive to measure flower traits, such as color, time of flower opening, and shape. We compared day and night scents from 31 Sileneae species and tested for quantitative and semi-quantitative differences in scent among species classified a priori as diurnal or nocturnal. As most Sileneae species are not only visited by either diurnal or nocturnal animals as predicted by their syndrome, we hypothesized that, even if flower scent were preferentially emitted during the day or at night, most species also would emit some scents during the opposing periods of the day. This phenomenon would contribute to the generalized assemblage of flower visitors usually observed in Sileneae species. We found that diel variations of scent often were not congruent with the syndrome definition, but could partially be explained by taxonomy and sampling times. Most species emitted compounds with attractive potential to insects during both the night and day. Our results highlight the current opinion that syndromes are not watertight compartments evolved to exclude some flower visitors. Thus, important information may be lost when scents are collected either during day- or night-time, depending on the a priori classification of the species as diurnal or nocturnal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams RP (2008) Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing Corporation, Carol Stream, IL, USA

    Google Scholar 

  • Anderson MJ, Gorley RN, Clark KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth

    Google Scholar 

  • Andersson S (2003) Antennal responses to floral scents in the butterflies Inachis io, aglais urticae (Nymphalidae), and Gonepteryx rhamni (Pieridae). Chemoecology 13:13–20

    Article  CAS  Google Scholar 

  • Armbruster S, Fenster C, Dudash M (2000) Pollination'principles' revisited: specialization, pollination syndromes, and the evolution of flowers. The Scandinavian Association for Pollination Ecology Honours Knut Faegri 39:179–200

    Google Scholar 

  • Bergström G, Birgersson G, Groth I, Nilsson LA (1992) Floral fragrance disparity between three taxa of lady's slipper Cypripedium calceolus (Orchidaceae). Phytochemistry 31:2315–2319

    Article  Google Scholar 

  • Bittrich V (1993) Caryophyllaceae. In: Kubitzki K, Rohwer G, Bittrich V (eds) Flowering plants· dicotyledons. Springer, Berlin Heidelberg, pp. 206–236

    Chapter  Google Scholar 

  • Brittain C, Williams N, Kremen C, Klein AM (2013) Synergistic effects of non-apis bees and honey bees for pollination services. Proc R Soc B 280:20122767

    Article  PubMed Central  PubMed  Google Scholar 

  • Byers KJ, Vela JP, Peng F, Riffell JA, Bradshaw HD (2014) Floral volatile alleles can contribute to pollinator-mediated reproductive isolation in monkeyflowers (Mimulus). The Plant Journal 80:1031–1042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castillo DM, Kula AAR, Dötterl S, Dudash MR, Fenster CB (2014) Invasive Silene latifolia may benefit from a native pollinating seed predator, Hadena ectypa, in North America. Int J Plant Sci 175:80–91

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E Ltd, Plymouth, UK

    Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E Ltd, Plymouth

    Google Scholar 

  • Desfeux C, Lejeune B (1996) Systematics of euromediterranean Silene (Caryophyllaceae): evidence from a phylogenetic analysis using ITS sequences. C R Acad Sci, Ser III 319:351–358

    CAS  Google Scholar 

  • Dobson HEM (2006) Relationship between floral fragrance composition and type of pollinator. In: Dudareva N, Pichersky E (eds) Biology of floral scent. Taylor & Francis Group, Boca Raton, pp. 147–198

    Chapter  Google Scholar 

  • Dötterl S, Jürgens A (2005) Spatial fragrance patterns in flowers of Silene latifolia: lilac compounds as olfactory nectar guides? Plant Syst Evol 255:99–109

    Article  Google Scholar 

  • Dötterl S, Wolfe LM, Jürgens A (2005) Qualitative and quantitative analyses of flower scent in Silene latifolia. Phytochemistry 66:203–213

    Article  PubMed  Google Scholar 

  • Dötterl S, Jürgens A, Seifert K, Laube T, Weissbecker B, Schütz S (2006) Nursery pollination by a moth in Silene latifolia: the role of odours in eliciting antennal and behavioural responses. New Phytol 169:707–718

    Article  PubMed  Google Scholar 

  • Dötterl S, Jahreiß K, Jhumur US, Jürgens A (2012) Temporal variation of flower scent in Silene otites (Caryophyllaceae): a species with a mixed pollination system. Bot J Linn Soc 169:447–460

    Article  Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403

    Article  Google Scholar 

  • Feulner M, Pointner S, Heuss L, Aas G, Paule J, Dötterl S (2014) Floral scent and its correlation with AFLP data in Sorbus. Org Divers Evol 14:339–348

    Article  Google Scholar 

  • Fishbein M, Venable DL (1996) Diversity and temporal change in the effective pollinators of Asclepias tuberosa. Ecology 77:1061–1073

    Article  Google Scholar 

  • Giménez-Benavides L, Dötterl S, Jürgens A, Escudero A, Iriondo JM (2007) Generalist diurnal pollination provides greater fitness in a plant with nocturnal pollination syndrome: assessing the effects of a Silene-Hadena interaction. Oikos 116:1461–1472

    Google Scholar 

  • Greenberg AK, Donoghue MJ (2011) Molecular systematics and character evolution in Caryophyllaceae. Taxon:1637–1652.

  • Gregg KB (1983) Variation in floral fragrances and morphology: incipient speciation in Cycnoches? Bot Gaz 144:566–576

    Article  Google Scholar 

  • Greuter W (1995) Silene (caryophyllaceae) in Greece: a subgeneric and sectional classification. Taxon 44:543–581

    Article  Google Scholar 

  • Harbaugh DT, Nepokroeff M, Rabeler RK, McNeill J, Zimmer EA, Wagner WL (2010) A new lineage-based tribal classification of the family Caryophyllaceae. Int J Plant Sci 171:85–198

    Article  Google Scholar 

  • Herrera CM (1996) Floral traits and plant adaptation to insect pollinators: a devil’s advocate approach. In: Barrett S (ed) Lloyd D. Floral Biology, Springer US, pp. 65–87

    Google Scholar 

  • Honda K, Ômura H, Hayashi N (1998) Identification of floral volatiles from Ligustrum japonicum that stimulate flower-visiting by cabbage butterfly, Pieris rapae. J Chem Ecol 24:2167–2180

    Article  CAS  Google Scholar 

  • Javorek SK, Mackenzie KE, Vander Kloet SP (2002) Comparative pollination effectiveness among bees (Hymenoptera: Apoidea) on lowbush blueberry (Ericaceae: Vaccinium angustifolium). Ann Entomol Soc Am 95:345–351

    Article  Google Scholar 

  • Junker RR, Blüthgen N (2010) Floral scents repel facultative flower visitors, but attract obligate ones. Ann Bot 105:777–782

    Article  PubMed Central  PubMed  Google Scholar 

  • Jürgens A (2004) Flowerscent composition in diurnal Silene species (Caryophyllaceae): phylogenetic constraints or adaption to flower visitors? Biochem Syst Ecol 32:841–859

    Article  Google Scholar 

  • Jürgens A, Witt T, Gottsberger G (1996) Reproduction and pollination in central European populations of Silene and Saponaria species. Bot Acta 109:316–324

    Article  Google Scholar 

  • Jürgens A, Witt T, Gottsberger G (2002a) Pollen grain numbers, ovule numbers and pollen-ovule ratios in Caryophylloideae: correlation with breeding system, pollination, life form, style number, and sexual system. Sex Plant Reprod 14:279–289

    Article  Google Scholar 

  • Jürgens A, Witt T, Gottsberger G (2002b) Flower scent composition in night-flowering Silene species (Caryophyllaceae). Biochem Syst Ecol 30:383–397

    Article  Google Scholar 

  • Jürgens A, Witt T, Gottsberger G (2003) Flower scent composition in Dianthus and Saponaria species (Caryophyllaceae) and its relevance for pollination biology and taxonomy. Biochem Syst Ecol 31:345–357

    Article  Google Scholar 

  • Jürgens A, Witt T, Gottsberger G (2012) Pollen grain size variation in Caryophylloideae: a mixed strategy for pollen deposition along styles with long stigmatic areas? Plant Syst Evol 298:9–24

    Article  Google Scholar 

  • Kephart S, Reynolds RJ, Rutter MT, Fenster CB, Dudash MR (2006) Pollination and seed predation by moths on Silene and allied Caryophyllaceae: evaluating a model system to study the evolution of mutualisms. New Phytol 169:667–680

    Article  PubMed  Google Scholar 

  • Knudsen JT, Tollsten L (1993) Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth taxa. Bot J Linn Soc 113:263–284

  • Knudsen JT, Eriksson R, Gershenzon J (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120

    Article  Google Scholar 

  • Levin RA, McDade LA, Raguso RA (2003) The systematic utility of floral and vegetative fragrance in two genera of Nyctaginaceae. Syst Biol 52:334–351

    Article  PubMed  Google Scholar 

  • Light DM, Flath RA, Buttery RG, Zalom FG, Rice RE, Dickens JC, Jang EB (1993) Host-plant green-leaf volatiles synergize the synthetic sex pheromones of the corn earworm and codling moth (Lepidoptera). Chemoecology 4:145–152

    Article  CAS  Google Scholar 

  • Lindman CAM (1897) Remarques sur la floraison du genre Silene L. Acta Horti Bergiana 3:3–28

    Google Scholar 

  • Martinell MC, Dötterl S, Blanché C, Rovira A, Massó S, Bosch M (2010) Nocturnal pollination of the endemic Silene sennenii (Caryophyllaceae): an endangered mutualism? Plant Ecol 211:203–218

    Article  Google Scholar 

  • Miyake T, Yamaoka R, Yahara T (1998) Floral scents of hawkmoth-pollinated flowers in Japan. J Plant Res 111:199–205

    Article  CAS  Google Scholar 

  • Motten AF, Campbell DR, Alexander DE, Miller HL (1981) Pollination effectiveness of specialist and generalist visitors to a North Carolina population of Claytonia virginica. Ecology 62:1278–1287

    Article  Google Scholar 

  • Ollerton J, Alarcón R, Waser NM, Price MV, Watts S, Cranmer L, Hingston A, Peter CI, Rotenberry J (2009) A global test of the pollination syndrome hypothesis. Ann Bot 103:1471–1480

    Article  PubMed Central  PubMed  Google Scholar 

  • Oxelman B, Lidén M (1995) Generic boundaries in the tribe Sileneae (Caryophyllaceae) as inferred from nuclear rDNA sequences. Taxon 44:525–542

    Article  Google Scholar 

  • Oxelman B, Rautenberg A, Thollesson M, Larsson A, Frajman B, Eggens F, Petri A, Aydin Z, Töpel, M, Brandtberg-Falkman A (2013) Sileneae taxonomy and systematics. http://www.sileneae.info

  • Pettersson MW (1991) Pollination by a guild of fluctuating moth populations: option for unspecialization in Silene vulgaris. J Ecol 79:591–604

    Article  Google Scholar 

  • Pichersky E, Raguso RA, Lewinsohn E, Croteau R (1994) Floral scent production in Clarkia (onagraceae). I. Localization and developmental modulation of monoterpene emission and linalool synthase activity. Plant Physiol 106:1533–1540

    PubMed Central  CAS  PubMed  Google Scholar 

  • Plepys D, Ibarra F, Löfstedt C (2002) Volatiles from flowers of Platanthera bifolia (Orchidaceae) attractive to the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae). Oikos 99:69–74

    Article  CAS  Google Scholar 

  • Raguso RA, Light DM (1998) Electroantennogram responses of male Sphinx perelegans hawkmoths to floral and ‘green-leaf volatiles’. Entomol Exp Appl 86:287–293

    Article  CAS  Google Scholar 

  • Raguso RA, Light DM, Pickersky E (1996) Electroantennogram responses of Hyles lineata (Sphingidae: Lepidoptera) to volatile compounds from Clarkia breweri (Onagraceae) and other moth-pollinated flowers. J Chem Ecol 22:1735–1766

    Article  CAS  PubMed  Google Scholar 

  • Reynolds RJ, Westbrook MJ, Rohde AS, Cridland JM, Fenster CB, Dudash MR (2009) Pollinator specialization and pollination syndromes of three related north American Silene. Ecology 90:2077–2087

    Article  PubMed  Google Scholar 

  • Reynolds RJ, Kula AA, Fenster CB, Dudash MR (2012) Variable nursery pollinator importance and its effect on plant reproductive success. Oecologia 168:439–448

    Article  PubMed  Google Scholar 

  • Rosas-Guerrero V, Aguilar R, Martén-Rodríguez S, Ahsworth L, Lopezaraiza-Mikel M, Bastida JM, Quesada M (2014) A quantitative review of pollination syndrome: do floral traits predict effective pollinators? Ecol Lett 17:388–400

    Article  PubMed  Google Scholar 

  • Schiestl FP (2010) The evolution of floral scent and insect chemical communication. Ecol Lett 13:643–656

    Article  PubMed  Google Scholar 

  • Schlumpberger BO, Raguso RA (2008) Geographic variation in floral scent of Echinopsis ancistrophora (Cactaceae); evidence for constraints on hawkmoth attraction. Oikos 117:801–814

    Article  Google Scholar 

  • Thompson JN (1994) The coevolutionary process. University of Chicago Press

  • Thompson JN (1999) Specific hypotheses on the geographic mosaic of coevolution. Am Nat 153:1–14

    Article  Google Scholar 

  • Visser JH, VAN Straten S, Maarse H (1979) Isolation and identification of volatiles in the foliage of potato, Solanum tuberosum, a host plant of the Colorado beetle, Leptinotarsa decemlineata. J Chem Ecol 5:13–25

    Article  CAS  Google Scholar 

  • Waelti MO, Muhlemann JK, Widmer A, Schiestl FP (2008) Floral odour and reproductive isolation in two species of Silene. J Evol Biol 21:111–121

    CAS  PubMed  Google Scholar 

  • Waser NM, Price MV (1990) Pollination efficiency and effectiveness of bumble bees and hummingbirds visiting Delphinium nelsonii. Collect Bot 19:9–20

    Article  Google Scholar 

  • Waser NM, Chittka L, Price MV, Williams NM, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060

    Article  Google Scholar 

  • Witt T, Jürgens A, Gottsberger G (2013) Nectar sugar composition of European Caryophylloideae (Caryophyllaceae) in relation to flower length, pollination biology and phylogeny. J Evol Biol 26:2244–2259

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the seed banks and botanical gardens listed in Table 1 for providing seeds and M. Buide and E. Narbona for sampling the Sect. Psammophilae. We also thank J. L. Margalet for caring for the plants. This work was supported by the MINECO research project of the Spanish Government [CGL2009-08755].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Prieto-Benítez.

Electronic supplementary material

ESM 1

(DOCX 95.8 kb)

ESM 2

(DOCX 17.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prieto-Benítez, S., Dötterl, S. & Giménez-Benavides, L. Diel Variation in Flower Scent Reveals Poor Consistency of Diurnal and Nocturnal Pollination Syndromes in Sileneae. J Chem Ecol 41, 1095–1104 (2015). https://doi.org/10.1007/s10886-015-0645-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-015-0645-z

Keywords

Navigation