Skip to main content
Log in

Aspen Defense Chemicals Influence Midgut Bacterial Community Composition of Gypsy Moth

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Microbial symbionts are becoming increasingly recognized as mediators of many aspects of plant – herbivore interactions. However, the influence of plant chemical defenses on gut associates of insect herbivores is less well understood. We used gypsy moth (Lymantria dispar L.), and differing trembling aspen (Populus tremuloides Michx.) genotypes that vary in chemical defenses, to assess the influence of foliar chemistry on bacterial communities of larval midguts. We evaluated the bacterial community composition of foliage, and of midguts of larvae feeding on those leaves, using next-generation high-throughput sequencing. Plant defense chemicals did not influence the composition of foliar communities. In contrast, both phenolic glycosides and condensed tannins affected the bacterial consortia of gypsy moth midguts. The two most abundant operational taxonomic units were classified as Ralstonia and Acinetobacter. The relative abundance of Ralstonia was higher in midguts than in foliage when phenolic glycoside concentrations were low, but lower in midguts when phenolic glycosides were high. In contrast, the relative abundance of Ralstonia was lower in midguts than in foliage when condensed tannin concentrations were low, but higher in midguts when condensed tannins were high. Acinetobacter showed a different relationship with host chemistry, being relatively more abundant in midguts than with foliage when condensed tannin concentrations were low, but lower in midguts when condensed tannins were high. Acinetobacter tended to have a greater relative abundance in midguts of insects feeding on genotypes with high phenolic glycoside concentrations. These results show that plant defense chemicals influence herbivore midgut communities, which may in turn influence host utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abreu IN, Ahnlund M, Moritz T, Albrectsen BR (2011) UHPLC-ESI/TOFMS determination of salicylate-like phenolic gycosides in Populus tremula leaves. J Chem Ecol 37:857–870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Adams AS, Boone CK, Bohlmann J, Raffa KF (2011) Responses of bark beetle-associated bacteria to host monoterpenes and their relationship to insect life histories. J Chem Ecol 37:808–817

    Article  CAS  PubMed  Google Scholar 

  • Adams AS, Aylward FO, Adams SM, Erbilgin N, Aukema BH, Currie CR, Suen G, Raffa KF (2013) Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl Environ Microbiol 79:3468–3475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson RC, Rasmussen MA, Allison MJ (1993) Metabolism of the plant toxins nitropropionic acid and nitropropanol by ruminal microorganisms. Appl Environ Microbiol 59:3056–3061

    CAS  PubMed Central  PubMed  Google Scholar 

  • Appel HM, Maines LW (1995) The influence of host plant on gut conditions of gypsy moth (Lymantria dispar) caterpillars. J Insect Physiol 41:241–246

    Article  CAS  Google Scholar 

  • Ayayee P, Rosa C, Ferry JG, Felton GW, Saunders M, Hoover K (2014) Gut microbes contribute to nitrogen provisioning in a wood-feeding cerambycid. Environ Entomol 43(4):903–912

  • Bailey JK, Deckert R, Schweitzer JA, Rehill BJ, Lindroth RL, Gehring C, Whitham TG (2005) Host plant genetics affect hidden ecological players: links among Populus, condensed tannins, and fungal endophyte infection. Can J Bot 83:356–361

    Article  Google Scholar 

  • Barbehenn RV, Constabel C (2011) Tannins in plant-herbivore interactions. Phytochemistry 72:1551–65

    Article  CAS  PubMed  Google Scholar 

  • Barbehenn RV, Jaros A, Lee G, Mozola C, Weir Q, Salminen J-P (2009) Tree resistance to Lymantria dispar caterpillars: importance and limitations of foliar tannin composition. Oecologia 159:777–88

    Article  PubMed  Google Scholar 

  • Boeckler GA, Gershenzon J, Unsicker SB (2011) Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry 72:1497–509, Elsevier Ltd

    Article  CAS  PubMed  Google Scholar 

  • Boone CK, Keefover-Ring K, Mapes AC, Adams AS, Bohlmann J, Raffa KF (2013) Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. J Chem Ecol 39:1003–1006

    Article  CAS  PubMed  Google Scholar 

  • Broderick NA, Raffa KF, Goodman RM, Handelsman J (2004) Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl Environ Microbiol 70:293–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chung SH, Rosa C, Scully ED, Peiffer M, Tooker JF, Hoover K, Luthe DS, Felton GW (2013) Herbivore exploits orally secreted bacteria to suppress plant defenses. Proc Natl Acad Sci U S A 110:15728–15733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Diguistini S, Wang Y, Liao NY, Taylor G, Tanguay P, Feau N, Henrissat B, Chan SK, Hesse-Orce U, Alamouti S, Tsui C, Docking R, Levasseur A, Haridas S, Roberston G, BIROL I, Holt R, Marra M, Hamelin R, Hirst M, Jones S, Bohlmann J, Breuil C (2011) Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen. Proc Natl Acad Sci U S A 108:2504–2509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Donaldson JR, Stevens MT, Barnhill HR, Lindroth RL (2006) Age-related shifts in leaf chemistry of clonal aspen (Populus tremuloides). J Chem Ecol 32:1415–1429

  • Dowd PF, Shen SK (1990) The contribution of symbiotic yeast to toxin resistance of the cigarette beetle (Lasioderma serricorne). Entomol Exp Appl 56:241–248

    Article  CAS  Google Scholar 

  • Driebe EM, Whitham TG (2000) Cottonwood hybridization affects tannin and nitrogen content of leaf litter and alters decomposition. Oecologia 123:99–107

    Article  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geib SM, Filley TR, Hatcher PG, Hoover K, Carlson JE, Jimenez-Gasco MDM, Nakagawa-Izumi A, Sleighter RL, Tien M (2008) Lignin degradation in wood-feeding insects. Proc Natl Acad Sci U S A 105:12932–12937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gündüz EA, Douglas AE (2009) Symbiotic bacteria enable insect to use a nutritionally inadequate diet. Proc Biol Sci 276:987–991

    Article  Google Scholar 

  • Hagerman AE, Butler LG (1980) Condensed tannin purification and characterization of tannin-associated proteins. J Agric Food Chem 28:947–952

    Article  CAS  PubMed  Google Scholar 

  • Hammerbacher A, Schmidt A, Wadke N, Wright LP, Schneider B, Bohlmann J, Brand WA, Fenning TM, Gershenzon J, Paetz C (2013) A common fungal associate of the spruce bark beetle metabolizes the stilbene defenses of Norway spruce. Plant Physiol 162:1324–1336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanshew AS, Mason CJ, Raffa KF, Currie CR (2013) Minimization of chloroplast contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial communities. J Microbiol Methods 95:149–155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hemming JDC, Lindroth RL (1995) Intraspecific variation in aspen phytochemistry: effects on performance of gypsy moths and forest tent caterpillars. Oecologia 103:79–88

    Article  Google Scholar 

  • Holeski LM, Vogelzang A, Stanosz G, Lindroth RL (2009) Incidence of Venturia shoot blight in aspen (Populus tremuloides Michx.) varies with tree chemistry and genotype. Biochem Syst Ecol 37:139–145

    Article  CAS  Google Scholar 

  • Hosokawa T, Hironaka M, Mukai H, Inadomi K, Suzuki N, Fukatsu T (2012) Mothers never miss the moment: a fine-tuned mechanism for vertical symbiont transmission in a subsocial insect. Anim Behav 83:293–300

    Article  Google Scholar 

  • Humphrey PT, Nguyen TT, Villalobos MM, Whiteman NK (2014) Diversity and abundance of phyllosphere bacteria are linked to insect herbivory. Mol Ecol 23:1497–1515

    Article  CAS  PubMed  Google Scholar 

  • Hwang S-Y, Lindroth RL (1997) Clonal variation in foliar chemistry of aspen: effects on gypsy moths and forest tent caterpillars. Oecologia 111:99–108

    Article  Google Scholar 

  • Johnson KS, Barbehenn RV (2000) Oxygen levels in the gut lumens of herbivorous insects. J Insect Physiol 46:897–903

    Article  CAS  PubMed  Google Scholar 

  • Kaltenpoth M, Winter SA, Kleinhammer A (2009) Localization and transmission route of Coriobacterium glomerans, the endosymbiont of pyrrhocorid bugs. FEMS Microbiol Ecol 69:373–383

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi Y, Hosokawa T, Fukatsu T (2007) Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol 73:4308–4316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T (2012) Symbiont-mediated insecticide resistance. Proc Natl Acad Sci U S A 109:8619–8622

    Article  Google Scholar 

  • Klepzig KD, Smalley EB, Raffa KF (1996) Combined chemical defenses against an insect-fungal complex. J Chem Ecol 22:1367–1388

    Article  CAS  PubMed  Google Scholar 

  • Kohl KD, Dearing MD (2012) Experience matters: prior exposure to plant toxins enhances diversity of gut microbes in herbivores. Ecol Lett 15:1008–1015

    Article  PubMed  Google Scholar 

  • Lees GL, Suttill NH, Gruber MY (1993) Condensed tannins in sainfoin. 1. A histological and cytological survey of plant tissues. Can J Bot 71:1147–1152

    Article  CAS  Google Scholar 

  • Liebhold AM, Gottschalk KW, Muzika RM, Montgomery ME, Young R, O’Day K, and Kelley, B (1995) Suitability of North American tree species to the gypsy moth: a summary of field and laboratory tests. U.S. Department of Agriculture Forest Service NE Forest Experimental Station General Technical Bulletin NE-211. U.S. Department of Agriculture, Washington, D.C

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lindroth R, Hwang S-Y (1996) Diversity, redundancy, and multiplicity in chemical defense systems of aspen. In: Romeo J, Saunders J, Barbosa P (eds) Phytochemical diversity and redundancy in ecological interactions SE - 2. Springer, US, pp 25–56

    Chapter  Google Scholar 

  • Lindroth RL, St. Clair SB (2013) Adaptations of quaking aspen (Populus tremuloides Michx.) for defense against herbivores. For Ecol Manag 299:14–21, Elsevier B.V

    Article  Google Scholar 

  • Lindroth RL, Scriber JM, Hsia MTS (1986) “Differential responses of tiger swallowtail subspecies to secondary metabolites from tulip tree and quaking aspen.” Oecologia 70(1):13–19

  • Łukasik P, Van Asch M, Guo H, Ferrari J, Godfray HCJ (2013) Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol Lett 16:214–218

    Article  PubMed  Google Scholar 

  • Mason CJ, Raffa KF (2014) Acquisition and structuring of larval midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae. Environ Entomol 43:594–604

    Article  Google Scholar 

  • Mason CJ, Couture JJ, Raffa KF (2014a) Plant-associated bacteria degrade plant defense chemicals and reduce their adverse effects on an insect defoliator. Oecologia 175:901–910

    Article  PubMed  Google Scholar 

  • Mason CJ, Pfammatter JA, Holeski LM, Raffa KF (2014b) Foliar bacterial communities of trembling aspen in a common garden. Can J Microbiol. doi:10.1139/cjm-2014-0362

    PubMed  Google Scholar 

  • Miller AW, Kohl KD, Dearing MD (2014) The gastrointestinal tract of the white-throated woodrat (Neotoma albigula) harbors distinct consortia of oxalate-degrading bacteria. Appl Environ Microbiol 80:1595–1601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    Article  PubMed  Google Scholar 

  • Morales-Jiménez J, Vera-Ponce De León A, García-Domínguez A, Martínez-Romero E, Zúñiga G, Hernández-Rodríguez C (2013) Nitrogen-fixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae). Microb Ecol 66:200–10

    Article  PubMed  Google Scholar 

  • Noda S, Kitade O, Inoue T, Kawai M, Kanuka M, Hiroshima K, Hongoh Y, Constantino R, Uys V, Zhong J, Kudo T, Ohkuma M (2007) Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts. Mol Ecol 16:1257–1266

    Article  CAS  PubMed  Google Scholar 

  • North RD, Jackson CW, Howse PE (1997) Evolutionary aspects of ant-fungus interactions in leaf-cutting ants. Trends Ecol Evol 12:386–389

    Article  CAS  PubMed  Google Scholar 

  • Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci U S A 100:1803–1807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Osier TL, Lindroth RL (2001) Effects of genotype, nutrient availability, and defoliation on aspen phytochemistry and insect performance. J Chem Ecol 27:1289–1313

    Article  CAS  PubMed  Google Scholar 

  • Osier TL, Hwang S, Lindroth R (2000) Effects of phytochemical variation in quaking aspen Populus tremuloides clones on gypsy moth Lymantria dispar performance in the field and laboratory. Ecol Entomol 25:197–207

    Article  Google Scholar 

  • Payyavula RS, Babst BA, Nelsen MP, Harding SA, Tsai C-J (2009) Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures. BMC Plant Biol 9:151

    Article  PubMed Central  PubMed  Google Scholar 

  • Porter L, Hrstich L, Chan B (1986) The converstion of procyanidins and propelphinidins to cyanidin and delphinidin. Phytochemistry 2:223–230

    Google Scholar 

  • Priya NG, Ojha A, Kajla MK, Raj A, Rajagopal R (2012) Host plant induced variation in gut bacteria of Helicoverpa armigera. PLoS ONE 7:e30768

    Article  PubMed  Google Scholar 

  • R Core Team. 2013. R: A language and environment for statistical computing. Vienna, Austria.

  • Scarborough C, Ferrari J, Godfray HCJ (2005) Aphid protected from pathogen by endosymbiont. Science 310:1781

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6:e27310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sellmer JC, Mccown BH, Haissig BE (1989) Shoot culture dynamics of six Populus clones. Tree Physiol 5:219–227

    Article  PubMed  Google Scholar 

  • Shao Y, Arias-Cordero E, Guo H, Bartram S, Boland W (2014) In Vivo Pyro-SIP assessing active gut microbiota of the cotton leafworm, Spodoptera littoralis. PLoS ONE 9:e85948

    Article  PubMed Central  PubMed  Google Scholar 

  • Sonowal R, Nandimath K, Kulkarni SS, Koushika SP, Nanjundiah V, Mahadevan S (2013) Hydrolysis of aromatic β-glucosides by non-pathogenic bacteria confers a chemical weapon against predators. Proc Biol Sci 280:20130721

    Article  PubMed Central  PubMed  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wink M (1993) The plant vacuole: a multifunctional compartment. J Exp Bot 44:231–246

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Andrew Helm for assistance with analyzing condensed tannins. Critical reviews by Dr. Claudio Gratton and two anonymous referees, and editorial comments, improved this manuscript. This work was supported by USDA Hatch WIS#01598 awarded to K. Raffa, NSF grant DEB 0841609 to R. Lindroth, and the University of Wisconsin-Madison College of Agricultural and Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles J. Mason.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Sample accumulation curves of each sequenced sample in this study. Samples were subsampled prior to analysis. Leveling of curves indicate adequate depth of sequence. (JPEG 447 kb)

High Resolution Image (EPS 193 kb)

Supplemental Table 1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mason, C.J., Rubert-Nason, K.F., Lindroth, R.L. et al. Aspen Defense Chemicals Influence Midgut Bacterial Community Composition of Gypsy Moth. J Chem Ecol 41, 75–84 (2015). https://doi.org/10.1007/s10886-014-0530-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-014-0530-1

Keywords

Navigation