Advertisement

Journal of Chemical Ecology

, Volume 40, Issue 7, pp 687–699 | Cite as

Synthesis of 6-Substituted 1-oxoindanoyl Isoleucine Conjugates and Modeling Studies with the COI1-JAZ Co-Receptor Complex of Lima Bean

  • Yoko Nakamura
  • Christian Paetz
  • Wolfgang Brandt
  • Anja David
  • Martha Rendón-Anaya
  • Alfredo Herrera-Estrella
  • Axel Mithöfer
  • Wilhelm Boland
Article

Abstract

The conjugates of 6-substituted 1-oxoindanoyl carboxylic acids with L-isoleucine are mimics of the plant hormone (+)-7-iso-JA-L-Ile (3) that controls and regulates secondary metabolism and stress responses. In order to generate ligands that can be used as hormone-like compounds possessing different biological activities, an efficient and short synthesis of 6-bromo-1-oxoindane-4-carboxylic acid opens a general route to 6-Br-1-oxoindanoyl L-isoleucine conjugate (Br-In-L-Ile) (9a) as a key intermediate for several bioactive 6-halogen-In-L-Ile analogs (7a, 8a, 10a). The 6-ethynyl-In-L-Ile analog (11a) might be a valuable tool to localize macromolecular receptor molecules by click-chemistry. The activities of In-Ile derivatives were evaluated by assays inducing the release of volatile organic compounds (VOCs) in lima bean (Phaseolus lunatus). Each compound showed slightly different VOC induction patterns. To correlate such differences with structural features, modeling studies of In-Ile derivatives with COI-JAZa/b/c co-receptors of P. lunatus were performed. The modeling profits from the rigid backbone of the 1-oxoindanonoyl conjugates, which allows only well defined interactions with the receptor complex.

Keywords

Jasmonate Molecular modeling Volatile Organic Compounds (VOCs) Lima bean (Phaseolus lunatusChemical Probes Structure-Activity Relationship COI1-JAZ co-receptor 

Notes

Acknowledgments

We thank Dr. Maritta Kunert for GC-MS measurements, Mina Dost for the IR spectra, Dr. Marco Kai for high-resolution mass spectra, Angelika Berg for taking care of lima beans, Sandra Scholz and Dr. Christian Kost for help with statistical analyses.

References

  1. Aoyama M, Arnold LD, Dinges J, Dixon RW, Djuric SW, Ericsson AM, Fischer K, Gasiecki AF, Gracias VJ, Holms JH (2005) Preparation of tricyclic pyrazole kinase inhibitors. WO 2005/095387Google Scholar
  2. Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–515 Google Scholar
  3. Azizian H, Eaborn C, Pidcock A (1981) Synthesis of organotrialkylstannanes. The reaction between organic halides and hexaalkyldistannanes in the presence of palladium complexes. J Organomet Chem 215:49–58Google Scholar
  4. Boland W, Hopke J, Donath J, Nüske J, Bublitz F (1995) Jasmonic acid and coronatin induce odor production in plants. Angew Chem Int Ed 34:1600–1602Google Scholar
  5. Cai L, Lu S, Pike VW (2008) Chemistry with [18 F] fluoride ion. Eur J Org Chem 2853–2873Google Scholar
  6. Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, García-Casado G, López-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671CrossRefPubMedGoogle Scholar
  7. Deepak S, Niranjan-Raj S, Shailasree S, Kini RK, Boland W, Shetty HS, Mithöfer A (2007) Induction of resistance against downy mildew pathogen in pearl millet by a synthetic jasmonate analogon. Physiol Mol Plant Pathol 71:96–105CrossRefGoogle Scholar
  8. Dicke M, Gols R, Ludeking D, Posthumus MA (1999) Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants. J Chem Ecol 25:1907–1922CrossRefGoogle Scholar
  9. Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350PubMedGoogle Scholar
  10. Furuya T, Strom AE, Ritter T (2009) Silver-mediated fluorination of functionalized aryl stannanes. J Am Chem Soc 131:1662–1663CrossRefPubMedGoogle Scholar
  11. Furuya T, Kamlet AS, Ritter T (2011) Catalysis for fluorination and trifluoromethylation. Nature 473:470–477PubMedCentralCrossRefPubMedGoogle Scholar
  12. Genrich F, Harms G, Schaumann E, Gjikaj M, Adiwidjaja G (2009) Functionalized esters as bis-electrophiles in a silicon-induced domino synthesis of annulated carbocycles. Tetrahedron 65:5577–5587CrossRefGoogle Scholar
  13. Gu M, Yan J, Bai Z, Chen Y-T, Lu W, Tang J, Duan L, Xie D, Nan F-J (2010) Design and synthesis of biotin-tagged photoaffinity probes of jasmonates. Bioorg Med Chem 18:3012–3019CrossRefPubMedGoogle Scholar
  14. Halgren TA (1996) Merck molecular force field.5. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. J Comput Chem 17:616–641CrossRefGoogle Scholar
  15. Harrowven DC, Curran DP, Kostiuk SL, Wallis-Guy IL, Whiting S, Stenning KJ, Tang B, Packard E, Nanson L (2010) Potassium carbonate–silica: a highly effective stationary phase for the chromatographic removal of organotin impurities. Chem Commun 46:6335–6337CrossRefGoogle Scholar
  16. Hartshorn MJ, Verdonk ML, Chessari G, Brewerton SC, Mooij WT, Mortenson PN, Murray CW (2007) Diverse, high-quality test set for the validation of protein-ligand docking performance. J Med Chem 50:726–741CrossRefPubMedGoogle Scholar
  17. Ichihara A, Shiraishi K, Sato H, Sakamura S, Nishiyama K, Sakai R, Furusaki A, Matsumoto T (1977) The structure of coronatine. J Am Chem Soc 99:636–637CrossRefGoogle Scholar
  18. Ichihara A, Shiraishi K, Sakamura S (1979) On the stereochemistry of coronatine : revised absolute configuration of (+)-coronamic acid. Tetrahedron Lett 20:365–368CrossRefGoogle Scholar
  19. Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144CrossRefPubMedGoogle Scholar
  20. Klapars A, Buchwald SL (2002) Copper-catalyzed halogen exchange in aryl halides: an aromatic finkelstein reaction. J Am Chem Soc 124:14844–14845CrossRefPubMedGoogle Scholar
  21. Kobayashi H, Longmire MR, Ogawa M, Choyke PL (2011) Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals. Chem Soc Rev 40:4626–4648PubMedCentralCrossRefPubMedGoogle Scholar
  22. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021CrossRefGoogle Scholar
  23. Koo AJK, Gao X, Jones AD, Howe GA (2009) A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J 59:974–986CrossRefPubMedGoogle Scholar
  24. Kost C, Heil M (2008) The defensive role of volatile emission and extrafloral nectar secretion for lima bean in nature. J Chem Ecol 34:2–13PubMedCentralCrossRefGoogle Scholar
  25. Krieger E, Koraimann G, Vriend G (2002) Increasing the precision of comparative models with YASARA NOVA - a self-parameterizing force field. Proteins 47:393–402CrossRefPubMedGoogle Scholar
  26. Kuck D, Schuster A, Krause RA, Tellenbröker J, Exner CP, Penk M, Bögge H, Müller A (2001) Multiply bridgehead- and periphery-substituted tribenzotriquinacenes - highly versatile rigid molecular building blocks with C-3v or C-3 symmetry. Tetrahedron 57:3587–3613CrossRefGoogle Scholar
  27. Lauchli R, Boland W (2003) Indanoyl amino acid conjugates: tunable elicitors of plant secondary metabolism. Chem Rec 3:12–21CrossRefPubMedGoogle Scholar
  28. Lauchli R, Schüler G, Boland W (2002) Selective induction of secondary metabolism in Phaseolus lunatus by 6-substituted indanoyl isoleucine conjugates. Phytochemistry 61:807–817CrossRefPubMedGoogle Scholar
  29. Mithöfer A, Maitrejean M, Boland W (2005) Structural and biological diversity of cyclic octadecanoids, jasmonates, and mimetics. J Plant Growth Regul 23:170–178CrossRefGoogle Scholar
  30. Okada M, Ito S, Matsubara A, Iwakura I, Egoshi S, Ueda M (2009) Total syntheses of coronatines by exo-selective Diels–Alder reaction and their biological activities on stomatal opening. Org Bio Chem 7:3065–3073CrossRefGoogle Scholar
  31. Okada M, Egoshi S, Ueda M (2010) Azido-coronatine: a useful platform for "click chemistry"-mediated probe synthesis for bioorganic studies. Biosci Biotechnol Biochem 74:2092–2095CrossRefPubMedGoogle Scholar
  32. Pluskota WE, Qu N, Maitrejean M, Boland W, Baldwin IT (2007) Jasmonates and its mimics differentially elicit systemic defence responses in Nicotiana attenuata. J Exp Bot 58:4071–4082CrossRefPubMedGoogle Scholar
  33. Rodriguez JG, Tejedor JL, Parra TL, Diaz C (2006) Synthesis of conjugated 2,7-bis (trimethylsilylethynyl)-(phenylethynyl) nfluoren-9-one and 9-(p-methoxyphenyl)-9-methyl derivatives: optical properties. Tetrahedron 62:3355–3361CrossRefGoogle Scholar
  34. Rohwer CL, Erwin JE (2008) Horticultural applications of jasmonates: A review. J Hortic Sci Biotechnol 83:283–304Google Scholar
  35. Ryzhikov NN, Seneca N, Krasikova RN, Gomzina NA, Shchukin E, Fedorova OS, Vassiliev DA, Gulyás B, Hall H, Savic I, Halldin C (2005) Preparation of highly specific radioactivity [18 F] flumazenil and its evaluation in cynomolgus monkey by positron emission tomography. Nucl Med Biol 32:109–116CrossRefPubMedGoogle Scholar
  36. Schüler G, Wasternack C, Boland W (1999) Synthesis of 6-azido-1-oxo-indan-4-oyl isoleucine; a photoaffinity approach to plant signaling. Tetrahedron 55:3897–3904CrossRefGoogle Scholar
  37. Schüler G, Görls H, Boland W (2001) 6-Substituted indanoyl isoleucine conjugates mimic the biological activity of coronatine. Eur J Org Chem 1663–1668Google Scholar
  38. Schüler G, Mithöfer A, Baldwin IT, Berger S, Ebel J, Santons JG, Herrmann G, Hölscher D, Kramell R, Kutchan TM, Maucher H, Schneider B, Stenzel I, Wasternack C, Boland W (2004) Coronalon: a powerful tool in plant stress physiology. FEBS Lett 563:17–22CrossRefPubMedGoogle Scholar
  39. Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu F-F, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405PubMedCentralCrossRefPubMedGoogle Scholar
  40. Sheppard TD (2009) Metal-catalysed halogen exchange reactions of aryl halides. Org Biomol Chem 7:1043–1052CrossRefPubMedGoogle Scholar
  41. Sivakumar K, Xie F, Cash BM, Long S, Barnhill HN, Wang Q (2004) A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes. Org Lett 6:4603–4606CrossRefPubMedGoogle Scholar
  42. Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed 48:6974–6998CrossRefGoogle Scholar
  43. Sonwa MM, Kost C, Biedermann A, Wegener R, Schulz S, Boland W (2007) Dehydrogenation of ocimene by active carbon: artefact formation during headspace sampling from leaves of Phaseolus lunatus. ARKIVOC 3:164–172CrossRefGoogle Scholar
  44. Srinivasan V, Alfold J, Heckenmüller H, Roach B (2005) Use of indanoyl amide to stimulate secondary metabolism in taxus sp. WO 2005/079355Google Scholar
  45. Suzuki M, Hasegawa M, Kodama O, Toshima H (2004) Dihydrocoronatine, promising candidate for a chemical probe to study coronatine-, jasmonoid- and octadecanoid-binding protein. Biosci Biotechnol Biochem 68:1617–1620CrossRefPubMedGoogle Scholar
  46. Svoboda J, Boland W (2010) Plant defense elicitors: analogues of jasmonoyl-isoleucine conjugate. Phytochemistry 71:1445–1449CrossRefPubMedGoogle Scholar
  47. Taber DF, Sheth RB, Tian WJ (2009) Synthesis of (+)-coronafacic acid. J Org Chem 74:2433–2437PubMedCentralCrossRefPubMedGoogle Scholar
  48. Tang P, Furuya T, Ritter T (2010) Silver-catalyzed late-stage fluorination. J Am Chem Soc 132:12150–12154PubMedCentralCrossRefPubMedGoogle Scholar
  49. Teare H, Robins EG, Kirjavainen A, Forsback S, Sandford G, Solin O, Luthra SK, Gouverneur V (2010) Radiosynthesis and evaluation of [18 F] selectfluor bis (triflate). Angew Chem Int Ed 49:6821–6824CrossRefGoogle Scholar
  50. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signaling. Nature 448:661–665CrossRefPubMedGoogle Scholar
  51. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins 52:609–623CrossRefPubMedGoogle Scholar
  52. Walter A, Mazars C, Maitrejean M, Hopke J, Ranjeva R, Boland W, Mithöfer A (2007) Structural requirements of jasmonates and synthetic analogues as inducers of Ca2+ signals in the nucleus and the cytosol of plant cells. Angew Chem Int Ed 46:4783–4785CrossRefGoogle Scholar
  53. Wang B, Sun H-X, Sun Z-H (2009) A general and efficient Suzuki–Miyaura cross-coupling protocol using weak base and no water: the essential role of acetate. Eur J Org Chem 3688–3692Google Scholar
  54. Wasternack C (2014) Action of jasmonates in plant stress responses and development-Applied aspects. Biotechnol Adv 32:31–39CrossRefPubMedGoogle Scholar
  55. Wasternack C, Hause B (2013) Jasmonate: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058PubMedCentralCrossRefPubMedGoogle Scholar
  56. Wojciechowski M, Leysyng B (2004) Generalized born model: Analysis, refinement, and applications to proteins. J Phys Chem B 108:18368–18376Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yoko Nakamura
    • 1
  • Christian Paetz
    • 1
  • Wolfgang Brandt
    • 2
  • Anja David
    • 1
  • Martha Rendón-Anaya
    • 3
  • Alfredo Herrera-Estrella
    • 3
  • Axel Mithöfer
    • 1
  • Wilhelm Boland
    • 1
  1. 1.Max Planck Institute for Chemical EcologyJenaGermany
  2. 2.Department of Bioorganic ChemistryLeibniz Institute of Plant BiochemistryHalle (Saale)Germany
  3. 3.Laboratorio Nacional de Genómica para la BiodiversidadCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalGuanajuatoMexico

Personalised recommendations