Advertisement

Journal of Chemical Ecology

, Volume 39, Issue 7, pp 1045–1054 | Cite as

Imaging Mass Spectrometry of a Coral Microbe Interaction with Fungi

  • Wilna J. Moree
  • Jane Y. Yang
  • Xiling Zhao
  • Wei-Ting Liu
  • Marystella Aparicio
  • Librada Atencio
  • Javier Ballesteros
  • Joel Sánchez
  • Ronnie G. Gavilán
  • Marcelino Gutiérrez
  • Pieter C. Dorrestein
Article

Abstract

Fungal infections are increasing worldwide, including in the aquatic environment. Microbiota that coexist with marine life can provide protection against fungal infections by secretion of metabolites with antifungal properties. Our laboratory has developed mass spectrometric methodologies with the goal of improving our functional understanding of microbial metabolites and guiding the discovery process of anti-infective agents from natural sources. GA40, a Bacillus amyloliquefaciens strain isolated from an octocoral in Panama, displayed antifungal activity against various terrestrial and marine fungal strains. Using matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS), the molecular species produced by this microbe were visualized in a side-by-side interaction with two representative fungal strains, Aspergillus fumigatus and Aspergillus niger. The visualization was performed directly on the agar without the need for extraction. By evaluating the spatial distributions, relative intensities and m/z values of GA40 secreted metabolites in the fungal interactions and singly grown control colonies, we obtained insight into the antifungal activity of secreted metabolites. Annotation of GA40 metabolites observed in MALDI-IMS was facilitated by MS/MS networking analysis, a mass spectrometric technique that clusters metabolites with similar MS/MS fragmentation patterns. This analysis established that the predominant GA40 metabolites belong to the iturin family. In a fungal inhibition assay of A. fumigatus, the GA40 iturin metabolites were found to be responsible for the antifungal properties of this Bacillus strain.

Keywords

Aspergillus fumigatus Aspergillus niger Bacillus amyloliquefaciens Antifungal MALDI-imaging mass spectrometry MS/MS networking Lipopeptide Iturin Muriceopsis bayeriana 

Notes

Acknowledgments

We thank the Prof. W. Nierman lab (JCVI) and the Paul Jensen lab (SIO, UCSD) for donation of strains, and Dr. Hector M. Guzman for taxonomical identification of the coral. We acknowledge the Government of Panama (ANAM) for granting permission to make the collections of the coral. This work was supported by NIH AI095125 and S10RR029121, by the NIH Fogarty International Center International Cooperative Biodiversity Groups program TW006634, and by the Government of Panama SENACYT COL09-047 and COL08-061.

Supplementary material

10886_2013_320_MOESM1_ESM.pdf (9.1 mb)
ESM 1 (PDF 9.06 MB)

References

  1. Alker AP, Smith GW, Kim K (2001) Characterization of Aspergillus sydowii, a fungal pathogen of Caribbean sea fan corals. Hydrobiologia 460:105–111CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  3. Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Fact 8:63PubMedCrossRefGoogle Scholar
  4. Balhara M, Ruil S, Dhankhar S, Chhillar AK (2011) Bioactive compounds hold up- Bacillus amyloliquefaciens as a potent bio-control agent. Nat Prod J 1:20–28Google Scholar
  5. Belofsky GN, Jensen PR, Fenical W (1999) Sansalvamide A: a new cytotoxic cyclic depsipeptide produced by a marine isolate of a fungus of the genus Fusarium. Tetrahedron Lett 40:2913–2916CrossRefGoogle Scholar
  6. Belofsky GN, Anguera M, Jensen PR, Fenical W, Köck M (2000) Oxepinamides A±C and Fumiquinazolines H± I: bioactive metabolites from a marine isolate of a fungus of the genus Acremonium. Chem Eur J 6:1355–1360PubMedCrossRefGoogle Scholar
  7. Berger L, Speare R, Daszak P, Green DE, Cunningham AA (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forest of Australia and Central America. Proc Natl Acad Sci U S A 95:9031–9036PubMedCrossRefGoogle Scholar
  8. Besson F, Peypoux F, Michel G, Delcambe L (1976) Characterization of iturin A in antibiotics from various strains of Bacillus subtilis. J Antibiot (Tokyo) 29:1043–1049CrossRefGoogle Scholar
  9. Besson F, Peypoux F, Quentin MJ, Michel G (1984) Action of antifungal peptidolipids from Bacillus subtilis on the cell membrane of Saccharomyces cerevisiae. J Antibiot (Tokyo) 37:172–177CrossRefGoogle Scholar
  10. Blehert DS, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL, Coleman JTH, Darling SR, Gargas A, Niver R, Okoniewski JC, Rudd RJ, Stone WB (2009) Bat white-nose syndrome: an emerging fungal pathogen? Science 323:227PubMedCrossRefGoogle Scholar
  11. Bruno JF, Ellner SP, Vu I, Kim K, Harvell CD (2011) Impacts of aspergillosis on sea fan coral demography: modeling a moving target. Ecol Monogr 81:123–139CrossRefGoogle Scholar
  12. Falardeau J, Wise C, Novitsky L, Avis TJ (2013) Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J Chem Ecol, this issueGoogle Scholar
  13. Favel D (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:A337–A359CrossRefGoogle Scholar
  14. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2011) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194CrossRefGoogle Scholar
  15. Gardener BBM, Fravel DR (2002) Biological control of plant pathogens: research, commercialization, and application in the USA. Plant Health Prog. doi: 10.1094/PHP-2002-0510-01-RV Google Scholar
  16. Garo E, Starks CM, Jensen PR, Fenical W, Lobkovsky E, Clardy J (2003) Trichodermamides A and B, cytotoxic modified dipeptides from the marine-derived fungus Trichoderma virens. J Nat Prod 66:423–426PubMedCrossRefGoogle Scholar
  17. Golberg K, Eltzov E, Shnit-Orland M, Marks RS, Kushmaro A (2011) Characterization of quorum sensing signals in coral-associated bacteria. Microb Ecol 61:783–792PubMedCrossRefGoogle Scholar
  18. Grovel O, Pouchus YF, Verbist J-F (2003) Accumulation of gliotoxin, a cytotoxic mycotoxinfrom Aspergillus fumigatus, in blue mussel (Mytilus edulis). Toxicon 42:297–300PubMedCrossRefGoogle Scholar
  19. Gueldner RC, Reilly CC, Pusey PL, Costello CE, Arrendale RF, Cox RH, Himmelsbach DS, Crumley FG, Cutler HG (1988) Isolation and identification of iturins as antifungal peptides in biological control of peach brown rot with Bacillus subtilis. J Agric Food Chem 36:366–370CrossRefGoogle Scholar
  20. Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR, Flaherty DC, Lam BA, Woodhams DC, Briggs CJ, Vredenburg VT, Minbiole KPC (2009) Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J 3:818–824PubMedCrossRefGoogle Scholar
  21. Jensen PR, Gontang E, Mafnas C, Mincer TJ, Fenical W (2005) Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. Environ Microbiol 7:1039–1048PubMedCrossRefGoogle Scholar
  22. Jiang P, Zhang X, Xu X, He F, Qi S (2013) Diversity and chemical defense role of culturable non-actinobacterial bacteria isolated from the South China Sea gorgonians. J Microbiol Biotechnol 23:437–443CrossRefGoogle Scholar
  23. Kim K, Harvell CD (2004) The rise and fall of a six-year coral-fungal epizootic. Am Nat 164:S52–S63PubMedCrossRefGoogle Scholar
  24. Kupherschmidt K (2012) Attack of the clones. Science 337:636–638CrossRefGoogle Scholar
  25. Latgé J-P (1999) Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12:310–350PubMedGoogle Scholar
  26. Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytrium dendrobatidis gen. etsp. nov., a chytrid pathogenic to amphibians. Mycologia 91:219–227CrossRefGoogle Scholar
  27. Lorch JM, Meteyer CU, Behr MJ, Boyles JG, Cryan PM, Hicks AC, Ballmann AE, Coleman JTH, Redell DN, Reeder DM, Blehert DS (2011) Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480:376–378PubMedCrossRefGoogle Scholar
  28. Moree WJ, Phelan VV, Wu C-H, Bandeira N, Cornett DS, Duggan BM, Dorrestein PC (2012) Interkingdom metabolic transformations captured by microbial imaging mass spectrometry. Proc Natl Acad Sci U S A 109:13811–13816PubMedCrossRefGoogle Scholar
  29. Nguyen DD, Wu C-H, Moree WJ, Lamsa A, Medema MH, Zhao X, Gavilan RG, Aparicio M, Atencio L, Jackson C, Ballesteros J, Sanchez J, Watrous JD, Phelan VV, van de Wiel C, Kersten RD, Mehnaz S, de Mot R, Shank EA, Charusanti P, Nagarajan H, Duggan BM, Moore BS, Bandeira N, Palsson BØ, Pogliano K, Gutiérrez M, Dorrestein PC (2013) MS/MS networking guided analysis of molecule and gene cluster families. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1303471110
  30. Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073PubMedCrossRefGoogle Scholar
  31. Rypien KL, Ward JR, Azam F (2010) Antagonistic interactions among coral-associated Bacteria. Environ Microbiol 12:28–39PubMedCrossRefGoogle Scholar
  32. Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O (eds) (2002) Introduction to food- and airborne fungi, 6th edn. Centraalbureau voor schimmelcultures, UtrechtGoogle Scholar
  33. Sánchez JA (2001) Systematic of the southwestern Caribbean Muriceopsis Aurivillius (Cnidaria: Octocorallia), with the description of a new species. Bull Biol Soc Wash 10:160–180Google Scholar
  34. Sánchez JA (2007) A new genus of Atlantic octocorals (Octocoralia: gorgoniidae): Systematics of gorgoniids with asymmetric sclerites. J Nat Hist 41:493–509CrossRefGoogle Scholar
  35. Shnit-Orland M, Sivan A, Kushmaro A (2012) Antibacterial activity of Pseudoalteromonas in the coral holobiont. Microb Ecol 64:851–859PubMedCrossRefGoogle Scholar
  36. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  37. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267PubMedCrossRefGoogle Scholar
  38. Watrous JD, Dorrestein PC (2011) Imaging mass spectrometry in microbiology. Nat Rev Microbiol 9:683–694PubMedCrossRefGoogle Scholar
  39. Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD, van der Voort M, Pogliano K, Gross H, Raaijmakers JM, Moore BS, Laskin J, Bandeira N, Dorrestein PC (2012) Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci U S A 109:E1743–E1752PubMedCrossRefGoogle Scholar
  40. Williams SM, Brodbelt JS (2004) MSn characterization of protonated cyclic peptides and metal complexes. J Am Soc Mass Spectrom 15:1039–1054PubMedCrossRefGoogle Scholar
  41. Yang YL, Xu Y, Straight P, Dorrestein PC (2009) Translating metabolic exchange with imaging mass spectrometry. Nat Chem Biol 5:885–887PubMedCrossRefGoogle Scholar
  42. Yang JY, Phelan VV, Simkovsky R, Watrous JD, Trial RM, Fleming TC, Wenter R, Moore BS, Golden SS, Pogliano K, Dorrestein PC (2012) A primer on agar-based microbial imaging mass spectrometry. J Bacteriol 194:6023–6028PubMedCrossRefGoogle Scholar
  43. Yokota K, Yatsuda M, Miwa E, Higuchi K (2012) Comparative study on sample preparation methods for the HPLC quantification of iturin from culture supernatant of an antagonistic bacillus strain. J ISSAAS 18:70–75Google Scholar
  44. Zhang X, Sun Y, Bao J, He F, Xu X, Qi S (2012) Phylogenetic survey and antimicrobial activity of culturable microorganisms associated with the South China Sea black coral Antipathes dichotoma. FEMS Microbiol Lett 336:122–130PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Wilna J. Moree
    • 1
  • Jane Y. Yang
    • 1
    • 2
  • Xiling Zhao
    • 2
  • Wei-Ting Liu
    • 1
    • 2
  • Marystella Aparicio
    • 3
  • Librada Atencio
    • 3
  • Javier Ballesteros
    • 3
  • Joel Sánchez
    • 3
  • Ronnie G. Gavilán
    • 3
  • Marcelino Gutiérrez
    • 3
  • Pieter C. Dorrestein
    • 1
    • 2
  1. 1.Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California at San DiegoLa JollaUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of California at San DiegoLa JollaUSA
  3. 3.Instituto de Investigaciones Científicas y Servicios de Alta TecnologíaCiudad del SaberPanamá

Personalised recommendations