Journal of Chemical Ecology

, Volume 39, Issue 5, pp 620–629 | Cite as

Synthetic Cis-Jasmone Exposure Induces Wheat and Barley Volatiles that Repel the Pest Cereal Leaf Beetle, Oulema melanopus L.

  • Kevin J. Delaney
  • Maria Wawrzyniak
  • Grzegorz Lemańczyk
  • Danuta Wrzesińska
  • Dariusz Piesik


The plant semiochemical cis-jasmone primes/induces plant resistance that deters herbivores and attracts natural enemies. We studied the induction of volatile organic compounds (VOCs) in winter wheat and spring barley after exposure of plants to three synthetic cis-jasmone doses (50 μl of 1, 100, and 1 × 104 ng μl−1) and durations of exposure (1, 3, and 6 h). Cereal leaf beetle, Oulema melanopus, adult behavioral responses were examined in a Y-tube olfactometer to cis-jasmone induced plant VOC bouquets and to two synthetic blends of VOCs (3 green leaf volatiles (GLVs); 4 terpenes + indole). In both cereals, eight VOCs [(Z)-3-hexanal, (Z)-3-hexanol, (Z)-3-hexanyl acetate, (Z)-β-ocimene, linalool, β-caryophyllene, (E)-ß–farnesene, and indole] were induced 100- to 1000-fold after cis-jasmone exposure. The degree of induction in both cereals was usually positively and linearly associated with increasing exposure dose and duration. However, VOC emission rate was only ~2-fold greater from plants exposed to the highest vs. lowest cis-jasmone exposure doses (1 × 104 difference) or durations (6-fold difference). Male and female O. melanopus were deterred by both cereal VOC bouquets after plant exposure to the high cis-jasmone dose (1 × 104 ng μl−1), while females were also deterred after plant exposure to the low dose (1 ng μl−1) but attracted to unexposed plant VOC bouquets. Both O. melanopus sexes were repelled by terpene/indole and GLV blends at two concentrations (25 ng · min−1; 125 ng · min−1), but attracted to the lowest dose (1 ng · min−1) of a GLV blend. It is possible that the biologically relevant low cis-jasmone dose has ecological activity and potential for inducing field crop VOCs to deter O. melanopus.


Hordeum vulgare Triticum aestivum cis-jasmone Volatile Cereal leaf beetle Induction 



We thank R.B. Srygley for performing the ARS paper review, as well as two anonymous reviewers for providing comments that improved previous drafts of this manuscript. This research was partly supported with funds provided by the Ministry of Science and Higher Education (contract number 1648/B/P01/2010/39 entitled, ‘Effect of volatile organic compounds released by green and floral parts of Brassica napus on behavior of Meligethes aeneus F.


  1. Birkett, M. A., Campbell, C. A. M., Chamberlain, K., Guerrieri, E., Hick, A. J., Martin, J. L., Matthes, M., Napier, J. A., Pettersson, J., Pickett, J. A., Poppy, G. M., Pow, E. M., Pye, B. J., Smart, L. E., Wadhams, G. H., Wadhams, L. J., and Woodcock, C. M. 2000. New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc. Natl. Acad. Sci. USA 97:9329–9334.PubMedCrossRefGoogle Scholar
  2. Bruce, T. J. A., Martin, J. L., Pickett, J. A., Pye, B. J., Smart, L. E., and Wadhams, L. J. 2003. Cis-Jasmone treatment induces resistance in wheat plants against the grain aphid, Sitobion avenae (Fabricius) (Homoptera: Aphididae). Pest. Manag. Sci. 59:1031–1036.PubMedCrossRefGoogle Scholar
  3. Bruce, T. J. A., Matthes, M. C., Chamberlain, K., Woodcock, C. M., Mohib, A., Webster, B., Smart, L. E., Birkett, M. A., Pickett, J. A., and Napier, J. A. 2008. Cis-jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. Proc. Natl. Acad. Sci. USA 105:4553–4558.PubMedCrossRefGoogle Scholar
  4. Bruce, T. J. A. and Pickett, J. A. 2007. Plant defence signalling induced by below and above-ground attacks. Curr. Opin. Plant Biol. 10:387–392.PubMedCrossRefGoogle Scholar
  5. Bruce, T. J. A. and Pickett, J. A. 2011. Perception of plant volatile blends by herbivorous insects - Finding the right mix. Phytochemistry 72:1605–1611.PubMedCrossRefGoogle Scholar
  6. Carroll, M. J., Schmelz, E. A., Meagher, R. L., and Teal, P. E. A. 2006. Attraction of Spodoptera frugiperda larvae to volatiles from herbivore-damaged maize seedlings. J. Chem. Ecol. 32:1911–1924.PubMedCrossRefGoogle Scholar
  7. Chamberlain, K., Pickett, J. A., and Woodcock, C. M. 2000. Plant signaling and induced defense in insect attack. Mol. Plant Pathol. 1:67–72.PubMedCrossRefGoogle Scholar
  8. Conrath, U., Beckers, G. J. M., Flors, V., García-Agustí, N. P., Jakab, G., Mauch, F., Newman, M. A., Pieterse, C. M. J., Poinssot, B., Pozo, M. J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L., and Mauch-Mani, B. 2006. Priming: getting ready for battle. Mol. Plant-Microbe Interact. 19:1062–1071.PubMedCrossRefGoogle Scholar
  9. Dicke, M. and Baldwin, I. T. 2010. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci. 15:167–174.PubMedCrossRefGoogle Scholar
  10. Dicke, M., van Loop, J. J. A., and Soler, R. 2009. Chemical complexity of volatiles from plants induced by multiple attack. Nat. Chem. Biol. 5:317–324.PubMedCrossRefGoogle Scholar
  11. Dimitrijević, B., Jelić, M., and Lomović, S. 1999. The effect of mineral nutrition on the damage degree of spring wheat by Lema melanopus L. (Coleoptera: Chrysomelidae). Acta Entomol Serbica 4:49–55.Google Scholar
  12. El-Sayed, A. M., Mitchell, V. J., McLaren, G. F., Manning, L. M., Bunn, B., and Suckling, D. M. 2009. Attraction of New Zealand Flower Thrips, Thrips obscuratus, to cis-jasmone, a volatile identified from Japanese honeysuckle flowers. J. Chem. Ecol. 35:656–63.PubMedCrossRefGoogle Scholar
  13. Engelberth, J., Alborn, H. T., Schmelz, E. A., and Tumlinson, J. H. 2004. Airborne signals prime plants against insect herbivore attack. Proc. Natl. Acad. Sci. USA 101:1781–1785.PubMedCrossRefGoogle Scholar
  14. Farag, M. A., Fokar, M., Abd, H., Zhang, H., Allen, R. D., and Paré, P. W. 2005. (Z)-3-hexenol induces defense genes and downstream metabolites in maize. Planta 220:900–909.PubMedCrossRefGoogle Scholar
  15. Farag, M. A. and Paré, P. W. 2002. C6-green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry 61:545–554.PubMedCrossRefGoogle Scholar
  16. Farmer, E. E. and Ryan, C. A. 1990. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 87:7713–7716.PubMedCrossRefGoogle Scholar
  17. Frost, C. J., Appel, H. M., Carlson, J. E., De Moraes, C. M., Mescher, M. C., and Schultz, J. C. 2007. Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecol. Lett. 10:490–498.PubMedCrossRefGoogle Scholar
  18. Hare, J. D. 2011. Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu. Rev. Entomol. 56:161–180.PubMedCrossRefGoogle Scholar
  19. Kessler, A. and Baldwin, I. T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144.PubMedCrossRefGoogle Scholar
  20. Kessler, A., Halitschke, R., Diezel, C., and Baldwin, I. T. 2006. Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia 148:280–292.PubMedCrossRefGoogle Scholar
  21. Koch, T., Bandemer, K., and Boland, W. 1997. Biosynthesis of cis-jasmone: a pathway for the inactivation and the disposal of the plant stress hormone jasmonic acid to the gas phase? Helv. Chim. Acta 80:838–850.CrossRefGoogle Scholar
  22. Loughrin, J. H., Manukian, A., Heath, R. R., and Tumlinson, J. H. 1995. Volatiles emitted by different cotton varieties damaged by feeding beet armyworm larvae. J. Chem. Ecol. 21:1217–1227.CrossRefGoogle Scholar
  23. Loughrin, J. H., Manukian, A., Heath, R. R., Turlings, T. C. J., and Tumlinson, J. H. 1994. Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plants. Proc. Natl. Acad. Sci. USA 91:11836–11840.PubMedCrossRefGoogle Scholar
  24. Matthes, M. C., Bruce, T. J. A., Ton, J., Verrier, P. J., Pickett, J. A., and Napier, J. A. 2010. The transcriptome of cis-jasmone induced resistance in Arabidopsis thaliana and its role in indirect defense. Planta 232:1163–80.PubMedCrossRefGoogle Scholar
  25. Moraes, M. C. B., Birkett, M. A., Gordon-Weeks, R., Smart, L. E., Martin, J. L., Pye, B. J., Bromilow, R., and Pickett, J. A. 2008. Cis-Jasmone induces accumulation of defence compounds in wheat, Triticum aestivum. Phytochemistry 69:9–17.PubMedCrossRefGoogle Scholar
  26. Pickett, J. A., Birkett, M. A., Bruce, T. J. A., Chamberlain, K., Gordon-Weeks, R., Matthes, M. C., Napier, J. A., Smart, L. E., and Woodcock, C. M. 2007a. Developments in aspects of ecological phytochemistry: the role of cis-jasmone in inducible defence systems in plants. Phytochemistry 68:2937–2945.PubMedCrossRefGoogle Scholar
  27. Pickett, J. A. and Poppy, G. M. 2001. Switching on plant genes by external chemical signals. Trends Plant Sci. 6:137–139.PubMedCrossRefGoogle Scholar
  28. Pickett, S. T. A., Kolasa, J., and Jones, C. 2007b. Ecological understanding: the nature of theory and the theory of nature, 2nd ed. Academic, Boston.Google Scholar
  29. Piesik, D., Łyszczarz, A., Tabaka, P., Lamparski, R., Bocianowski, J., and Delaney, K. J. 2010a. Volatile induction of three cereals: influence of mechanical injury and insect herbivory on injured plants and neighboring uninjured plants. Ann. Appl. Biol. 157:425–434.CrossRefGoogle Scholar
  30. Piesik, D., Lemańczyk, G., Skoczek, A., Lamparski, R., Bocianowski, J., Kotwica, K., and Delaney, K. J. 2011a. Fusarium infection in maize: Volatile induction of infected and neighboring uninfected plants has the potential to attract a pest cereal leaf beetle, Oulema melanopus. J. Plant Physiol. 168:1534–1542.PubMedCrossRefGoogle Scholar
  31. Piesik, D., Pańka, D., Delaney, K. J., Skoczek, A., Lamparski, R., and Weaver, D. K. 2011b. Cereal crop volatile organic compound induction after mechanical injury, beetle herbivory (Oulema spp.), or fungal infection (Fusarium spp.). J Plant Physiol 168:878–886.PubMedCrossRefGoogle Scholar
  32. Piesik, D., Pańka, D., Jeske, M., Wenda-Piesik, A., Delaney, K. J., and Weaver, D. K. 2013. Volatile induction of infected (Fusarium spp.) and neighboring uninfected barley and wheat may influence attraction/repellence of a cereal herbivore. J. Appl. Entomol. doi: 10.1111/j.1439-0418.2012.01742.x.Google Scholar
  33. Piesik, D., Weaver, D. K., Runyon, J. B., Buteler, M., Peck, G. E., and Morrill, W. L. 2008. Behavioral responses of wheat stem sawflies to wheat volatiles. Agric. For. Entomol. 10:245–253.CrossRefGoogle Scholar
  34. Piesik, D., Wenda-Piesik, A., Lamparski, R., Tabaka, P., Ligor, T., and Buszewski, B. 2010b. Effects of mechanical injury and insect feeding on volatiles emitted by wheat plants. Entomol. Fennica 21:117–128.Google Scholar
  35. Phillips, C. R., Herbert, D. A., Kuhar, T. P., Thomason, W. E., and Malone, S. 2011. Fifty years of cereal leaf beetle in the U.S.: an update on its biology, management, and current research. J. Integr Pest Manag 2:1–5. doi: 10.1603/IPM11014.CrossRefGoogle Scholar
  36. Röse, U. S. R. and Tumlinson, T. H. 2004. Volatiles released from cotton plants in response to Helicoverpa zea feeding damage on cotton flower buds. Planta 218:824–832.PubMedCrossRefGoogle Scholar
  37. Röse, U. S. R. and Tumlinson, T. H. 2005. Systemic release of volatile induction in cotton: how specific is the signal to herbivory? Planta 222:327–335.PubMedCrossRefGoogle Scholar
  38. Schlotzhauer, W. S., Pair, S. D., and Horvart, R. J. 1996. Volatile constituents from flowers of Japanese Honeysuckle (Lonicera japonica). J. Agr. Food. Chem. 44:206–209.CrossRefGoogle Scholar
  39. Schoonhoven, L. M., Van Loon, J. J. A., and Dicke, M. 2005. Insect-plant biology. Oxford University Press, UK.Google Scholar
  40. Tanaka, K., Uda, Y., Ono, Y., Nakagawa, T., Suwa, M., Yamaoka, R., and Touhara, K. 2009. Highly selective tuning of a silkworm olfactory receptor to a key mulberry leaf volatile. Curr Biol 19:881–90.PubMedCrossRefGoogle Scholar
  41. Tasin, M., Bäckman, A.-C., Coracini, M., Casado, D., Ioriatti, C., and Witzgall, P. 2007. Synergism and redundancy in a plant volatile blend attracting grapevine moth females. Phytochemistry 68:203–209.PubMedCrossRefGoogle Scholar
  42. Thaler, J. S., Stout, M. J., Karban, R., and Duffey, S. S. 1996. Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J. Chem. Ecol. 22:1767–1781.CrossRefGoogle Scholar
  43. Thaler, J. S., Karban, R., Ullman, D. E., Boege, K., and Bostock, R. M. 2002. Cross-talk between jasmonate and salicylate plant defense pathways: effects on several plant parasites. Oecologia 131:227–235.CrossRefGoogle Scholar
  44. Turlings, T. C. J., Tumlinson, J. H., and Lewis, W. J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Kevin J. Delaney
    • 1
  • Maria Wawrzyniak
    • 2
  • Grzegorz Lemańczyk
    • 2
  • Danuta Wrzesińska
    • 2
  • Dariusz Piesik
    • 2
  1. 1.Pest Management Research Unit, Northern Plains Agricultural Research LabUSDA-ARSSidneyUSA
  2. 2.Department of Entomology and Molecular PhytopathologyUniversity of Technology and Life SciencesBydgoszczPoland

Personalised recommendations