Skip to main content
Log in

Properties, Projections, and Tuning of Teleost Olfactory Receptor Neurons

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

In many fishes, the olfactory sense participates in such vital processes as feeding, reproduction, orientation, and predator avoidance. In teleosts, these tasks are fulfilled by a single type of olfactory organ for odorant and pheromone detection, containing ciliated and microvillus receptor neurons, and olfactory crypt cells. Recently, progress was made in understanding crypt cell function with the discovery of a V1R-like odorant receptor expressed in this neuron, an analysis of crypt cell odorant tuning properties, and the dissection of crypt cell connectivity within the telecephalon. Here, we review recent findings on the molecular properties, functions, and associated neural pathways of the three types of teleost olfactory receptor neurons with special emphasis on the crypt cell, and evaluate their roles in the detection of food, social and sexual odorants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baier, H. and Korsching, S. 1994. Olfactory glomeruli in the zebrafish form an invariant pattern and are identifiable across animals. J. Neurosci. 14:219–230.

    PubMed  CAS  Google Scholar 

  • Bazaes, A. and Schmachtenberg, O. 2012. Odorant tuning of olfactory crypt cells from juvenile and adult rainbow trout. J. Exp. Biol. 215:1740–1748.

    Article  PubMed  CAS  Google Scholar 

  • Belanger, R. M., Smith, C. M., Corkum, L. D., and Zielinski, B. S. 2003. Morphology and histochemistry of the peripheral olfactory organ in the round goby, Neogobius melanostomus (Teleostei: Gobiidae). J. Morphol. 257:62–71.

    Article  PubMed  Google Scholar 

  • Belanger, R. M., Pachkowski, M. D., and Stacey, N. E. 2010. Methyltestosterone-induced changes in electro-olfactogram responses and courtship behaviors of cyprinids. Chem. Senses 35:65–74.

    Article  PubMed  CAS  Google Scholar 

  • Bettini, S., Lazzari, M., Ciani, F., and Franceschini, V. 2009. Immunohistochemical and histochemical characteristics of the olfactory system of the guppy, Poecilia reticulata (Teleostei, Poecilidae). Anat. Rec. (Hoboken) 292:1569–1576.

    Article  Google Scholar 

  • Bettini, S., Lazzari, M., and Franceschini, V. 2012. Quantitative analysis of crypt cell population during postnatal development of the olfactory organ of the guppy, Poecilia reticulata (Teleostei, Poecilidae), from birth to sexual maturity. J. Exp. Biol. 215:2711–2715.

    Article  PubMed  Google Scholar 

  • Brown, E. N. and Smith, R. J. F. 1998. Acquired predator recognition in juvenile rainbow trout (Oncorhynchus mykiss): Conditioning hatchery-reared fish to recognize chemical cues of a predator. Can. J. Fish. Aquat. Sci. 55:611–617.

    Article  Google Scholar 

  • Buck, L. and Axel, R. 1991. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187.

    Article  PubMed  CAS  Google Scholar 

  • Cao, Y., Oh, B. C., and Stryer, L. 1998. Cloning and localization of two multigene receptor families in goldfish olfactory epithelium. Proc. Natl. Acad. Sci USA 95:11987–11992.

    Article  PubMed  CAS  Google Scholar 

  • Caprio, J. and Byrd Jr., R. P. 1984. Electrophysiological evidence for acidic, basic, and neutral amino acid olfactory receptor sites in the catfish. J. Gen. Physiol. 84:403–422.

    Article  PubMed  CAS  Google Scholar 

  • Chivers, D. P., Wisenden, B. D., Hindman, C. J., Michalak, T. A., Kusch, R. C., Kaminskyj, S. G., Jack, K. L., Ferrari, M. C., Pollock, R. J., Halbgewachs, C. F., et al. 2007. Epidermal ‘alarm substance’ cells of fishes maintained by non-alarm functions: Possible defence against pathogens, parasites and UVB radiation. Proc. Biol. Sci. 274:2611–2619.

    Article  PubMed  Google Scholar 

  • Colombo, L., Marconato, A., Colombo, P., and Friso, C. 1980. Endocrinology of teleost reproduction: A testicular steroid pheromone in the black goby, Gobius jozo L. Boll. Zool. 47:355–364.

    Article  Google Scholar 

  • Defraipont, M. and Sorensen, P. W. 1993. Exposure to the pheromone 17α,20β-dihydroxy-4-pregnen-3-one enhances the behavioural spawning success, sperm production and sperm motility of male goldfish. Anim. Behav. 46:245–256.

    Article  Google Scholar 

  • Doldan, M. J., Cid, P., Mantilla, L., and de Miguel Villegas, E. 2011. Development of the olfactory system in turbot (Psetta maxima L.). J. Chem. Neuroanat. 41:148–157.

    Article  PubMed  CAS  Google Scholar 

  • Døving, K. B. and Lastein, S. 2009. The alarm reaction in fishes-odorants, modulations of responses, neural pathways. Ann. N. Y. Acad. Sci. 1170:413–423.

    Article  PubMed  Google Scholar 

  • Døving, K. B. and Selset, R. 1980. Behavior patterns in cod released by electrical stimulation of olfactory tract bundlets. Science 207:559–560.

    Article  PubMed  Google Scholar 

  • Døving, K. B., Selset, R., and Thommesen, G. 1980. Olfactory sensitivity to bile acids in salmonid fishes. Acta Physiol. Scand. 108:123–131.

    Article  PubMed  Google Scholar 

  • Døving, K. B., Hansson, K. A., Backstrom, T., and Hamdani, E. H. 2011. Visualizing a set of olfactory sensory neurons responding to a bile salt. J. Exp. Biol. 214:80–87.

    Article  PubMed  Google Scholar 

  • Eisthen, H. L. 2004. The goldfish knows: Olfactory receptor cell morphology predicts receptor gene expression. J. Comp. Neurol. 477:341–346.

    Article  PubMed  CAS  Google Scholar 

  • Erickson, J. and Caprio, J. 1984. The spatial distribution of ciliated and microvillous olfactory receptor neurons in the channel catfish is not matched by a differential specificity to amino acid and bile salt stimuli. Chem. Senses 9:127–141.

    Article  Google Scholar 

  • Evans, R. E., Zielinski, B., and Hara, T. J. 1982. Development and regeneration of the olfactory organ in rainbow trout, pp. 15–38, in Τ. J. Hara (ed.), Chemoreception in Fishes. Elsevier, Amsterdam.

    Google Scholar 

  • Ferrando, S., Bottaro, M., Gallus, L., Girosi, L., Vacchi, M., and Tagliafierro, G. 2006. Observations of crypt neuron-like cells in the olfactory epithelium of a cartilaginous fish. Neurosci. Lett. 403:280–282.

    Article  PubMed  CAS  Google Scholar 

  • Finger, T. E. 1975. The distribution of the olfactory tracts in the bullhead catfish, Ictalurus nebulosus. J. Comp. Neurol. 161:125–141.

    Article  PubMed  CAS  Google Scholar 

  • Friedrich, R. W. and Korsching, S. I. 1998. Chemotopic, combinatorial, and noncombinatorial odorant representations in the olfactory bulb revealed using a voltage-sensitive axon tracer. J. Neurosci. 18:9977–9988.

    PubMed  CAS  Google Scholar 

  • Fuss, S. H. and Korsching, S. I. 2001. Odorant feature detection: activity mapping of structure response relationships in the zebrafish olfactory bulb. J. Neurosci. 21:8396–8407.

    PubMed  CAS  Google Scholar 

  • Gayoso, J. A., Castro, A., Anadon, R., and Manso, M. J. 2011. Differential bulbar and extrabulbar projections of diverse olfactory receptor neuron populations in the adult zebrafish (Danio rerio). J. Comp. Neurol. 519:247–276.

    Article  PubMed  Google Scholar 

  • Gayoso, J. A., Castro, A., Anadon, R., and Manso, M. J. 2012. Crypt cells of the zebrafish Danio rerio mainly project to the dorsomedial glomerular field of the olfactory bulb. Chem. Senses 37:357–369.

    Article  PubMed  CAS  Google Scholar 

  • Giaquinto, P. C. and Hara, T. J. 2008. Discrimination of bile acids by the rainbow trout olfactory system: Evidence as potential pheromone. Biol. Res. 41:33–42.

    Article  PubMed  Google Scholar 

  • Hagey, L. R., Møller, P. R., Hofmann, A. F., and Krasowski, M. D. 2010. Diversity of bile salts in fish and amphibians: Evolution of a complex biochemical pathway. Physiol. Biochem. Zool. 83:308–321.

    PubMed  CAS  Google Scholar 

  • Halpern, M. and Martinez-Marcos, A. 2003. Structure and function of the vomeronasal system: An update. Prog. Neurobiol. 70:245–318.

    Article  PubMed  CAS  Google Scholar 

  • Hamdani, E. H. and Døving, K. B. 2002. The alarm reaction in crucian carp is mediated by olfactory neurons with long dendrites. Chem. Senses 27:395–398.

    Article  Google Scholar 

  • Hamdani, E. H. and Døving, K. B. 2003. Sensitivity and selectivity of neurons in the medial region of the olfactory bulb to skin extract from conspecifics in crucian carp, Carassius carassius. Chem. Senses 28:181–189.

    Article  CAS  Google Scholar 

  • Hamdani, E. H. and Døving, K. 2005. Functional organization of the olfactory system in fish, pp. 221–255, in B. G. Kapoor, F. Ladich, S. Collin, and W. G. Raschi (eds.), Communication in Fish. Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi.

    Google Scholar 

  • Hamdani, E. H. and Døving, K. B. 2006. Specific projection of the sensory crypt cells in the olfactory system in crucian carp, Carassius carassius. Chem. Senses 31:63–67.

    Article  Google Scholar 

  • Hamdani, E. H. and Døving, K. B. 2007. The functional organization of the fish olfactory system. Prog. Neurobiol. 82:80–86.

    Article  CAS  Google Scholar 

  • Hamdani, E. H., Stabell, O. B., Alexander, G., and Døving, K. B. 2000. Alarm reaction in the crucian carp is mediated by the medial bundle of the medial olfactory tract. Chem. Senses 25:103–109.

    Article  PubMed  CAS  Google Scholar 

  • Hamdani, E. H., Alexander, G., and Døving, K. B. 2001a. Projection of sensory neurons with microvilli to the lateral olfactory tract indicates their participation in feeding behaviour in crucian carp. Chem. Senses 26:1139–1144.

    Article  PubMed  CAS  Google Scholar 

  • Hamdani, E. H., Kasumyan, A., and Døving, K. B. 2001b. Is feeding behaviour in crucian carp mediated by the lateral olfactory tract? Chem. Senses 26:1133–1138.

    Article  PubMed  CAS  Google Scholar 

  • Hamdani, E. H., Lastein, S., Gregersen, F., and Døving, K. B. 2008. Seasonal variations in olfactory sensory neurons—fish sensitivity to sex pheromones explained? Chem. Senses 33:119–123.

    Article  CAS  Google Scholar 

  • Hansen, A. and Finger, T. E. 2000. Phyletic distribution of crypt-type olfactory receptor neurons in fishes. Brain. Behav. Evol. 55:100–110.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, A. and Zielinski, B. S. 2005. Diversity in the olfactory epithelium of bony fishes: development, lamellar arrangement, sensory neuron cell types and transduction components. J. Neurocytol. 34:183–208.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, A., Eller, P., Finger, T. E., and Zeiske, E. 1997. The crypt cell: A microvillous ciliated olfactory receptor cell in teleost fishes. Chem. Senses 22:694–695.

    Google Scholar 

  • Hansen, A., Zippel, H. P., Sorensen, P. W., and Caprio, J. 1999. Ultrastructure of the olfactory epithelium in intact, axotomized, and bulbectomized goldfish, Carassius auratus. Microsc. Res. Tech. 45:325–338.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, A., Rolen, S. H., Anderson, K., Morita, Y., Caprio, J., and Finger, T. E. 2003. Correlation between olfactory receptor cell type and function in the channel catfish. J. Neurosci. 23:9328–9339.

    PubMed  CAS  Google Scholar 

  • Hansen, A., Anderson, K. T., and Finger, T. E. 2004. Differential distribution of olfactory receptor neurons in goldfish: Structural and molecular correlates. J. Comp. Neurol. 477:347–359.

    Article  PubMed  CAS  Google Scholar 

  • Hara, T. J. 1994. Olfaction and gustation in fish: An overview. Acta Physiol. Scand. 152:207–217.

    Article  PubMed  CAS  Google Scholar 

  • Hara T. J. 2011. Gustation, pp. 45–96, in T. J. Hara, B. S. Zielinski (eds.) Sensory Systems Neuroscience. Fish Physiology. Series 25, Academic Press, San Diego, CA, USA, 2006.

  • Hara, T. J. and Zhang, C. 1998. Topographic bulbar projections and dual neural pathways of the primary olfactory neurons in salmonid fishes. Neuroscience 82:301–313.

    Article  PubMed  CAS  Google Scholar 

  • Hashiguchi, Y. and Nishida, M. 2007. Evolution of trace amine associated receptor (TAAR) gene family in vertebrates: Lineage-specific expansions and degradations of a second class of vertebrate chemosensory receptors expressed in the olfactory epithelium. Mol. Biol. Evol. 24:2099–2107.

    Article  PubMed  CAS  Google Scholar 

  • Hashiguchi, Y., Furuta, Y., and Nishida, M. 2008. Evolutionary patterns and selective pressures of odorant/pheromone receptor gene families in teleost fishes. PLoS One 3:e4083.

    Article  PubMed  CAS  Google Scholar 

  • Hubbard, P. C., Barata, E. N., and Canario, A. V. 2003. Olfactory sensitivity of the gilthead seabream (Sparus auratus L) to conspecific body fluids. J. Chem. Ecol. 29:2481–2498.

    Article  PubMed  CAS  Google Scholar 

  • Hussain, A., Saraiva, L. R., and Korsching, S. I. 2009. Positive Darwinian selection and the birth of an olfactory receptor clade in teleosts. Proc. Natl. Acad. Sci. USA 106:4313–4318.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D. T. and Reed, R. R. 1989. Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science 244:790–795.

    Article  PubMed  CAS  Google Scholar 

  • Kang, J. and Caprio, J. 1995. In vivo responses of single olfactory receptor neurons in the channel catfish, Ictalurus punctatus. J. Neurophysiol. 73:172–177.

    PubMed  CAS  Google Scholar 

  • Kobayashi, M., Sorensen, P. W., and Stacey, N. 2002. Hormonal and pheromonal control of spawning behavior in the goldfish. Fish Physiol. Biochem. 26:71–84.

    Article  CAS  Google Scholar 

  • Koide, T., Miyasaka, N., Morimoto, K., Asakawa, K., Urasaki, A., Kawakami, K., and Yoshihara, Y. 2009. Olfactory neural circuitry for attraction to amino acids revealed by transposon-mediated gene trap approach in zebrafish. Proc. Natl. Acad. Sci. USA 106:9884–9889.

    Article  PubMed  CAS  Google Scholar 

  • Korsching, S. 2009. The molecular evolution of teleost olfactory receptor gene families. Results Probl. Cell Differ. 47:37–55.

    PubMed  CAS  Google Scholar 

  • Kudo, H., Doi, Y., Ueda, H., and Kaeriyama, M. 2009. Molecular characterization and histochemical demonstration of salmon olfactory marker protein in the olfactory epithelium of lacustrine sockeye salmon (Oncorhynchus nerka). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 154:142–150.

    Article  PubMed  CAS  Google Scholar 

  • Laberge, F. and Hara, T. J. 2001. Neurobiology of fish olfaction: A review. Brain Res. Brain Res. Rev. 36:46–59.

    Article  PubMed  CAS  Google Scholar 

  • Lambert, J. G., Hurk, R., Schoonen, W. G., Resink, J. W., and Oordt, P. G. 1986. Gonadal steroidogenesis and the possible role of steroid glucuronides as sex pheromones in two species of teleosts. Fish Physiol. Biochem. 2:101–107.

    Article  CAS  Google Scholar 

  • Lastein, S., Hamdani, E. H., and Døving, K. B. 2006. Gender distinction in neural discrimination of sex pheromones in the olfactory bulb of crucian carp, Carassius carassius. Chem. Senses 31:69–77.

    Article  PubMed  CAS  Google Scholar 

  • Li, W., Scott, A. P., Siefkes, M. J., Yan, H., Liu, Q., Yun, S. S., and Gage, D. A. 2002. Bile Acid secreted by male sea lamprey that acts as a sex pheromone. Science 296:138–141.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Mack, J. A., Souren, M., Yaksi, E., Higashijima, S., Mione, M., Fetcho, J. R., and Friedrich, R. W. 2005. Early development of functional spatial maps in the zebrafish olfactory bulb. J. Neurosci. 25:5784–5795.

    Article  PubMed  CAS  Google Scholar 

  • Liberles, S. D. 2009. Trace amine-associated receptors are olfactory receptors in vertebrates. Ann. N. Y. Acad. Sci. 1170:168–172.

    Article  PubMed  CAS  Google Scholar 

  • Liberles, S. D. and Buck, L. B. 2006. A second class of chemosensory receptors in the olfactory epithelium. Nature 442:645–650.

    Article  PubMed  CAS  Google Scholar 

  • Lim, H. and Sorensen, P. W. 2011. Polar metabolites synergize the activity of prostaglandin F2alpha in a species-specific hormonal sex pheromone released by ovulated common carp. J. Chem. Ecol. 37:695–704.

    Article  PubMed  CAS  Google Scholar 

  • Lipschitz, D. L. and Michel, W. C. 2002. Amino acid odorants stimulate microvillar sensory neurons. Chem. Senses 27:277–286.

    Article  PubMed  Google Scholar 

  • Margolis, F. L. 1972. A brain protein unique to the olfactory bulb. Proc. Natl. Acad. Sci. USA 69:1221–1224.

    Article  PubMed  CAS  Google Scholar 

  • Mathuru, A. S., Kibat, C., Cheong, W. F., Shui, G., Wenk, M. R., Friedrich, R. W., and Jesuthasan, S. 2012. Chondroitin fragments are odorants that trigger fear behavior in fish. Curr. Biol. 22:538–544.

    Article  PubMed  CAS  Google Scholar 

  • Meredith, T. L., Caprio, J., and Kajiura, S. M. 2012. Sensitivity and specificity of the olfactory epithelia of two elasmobranch species to bile salts. J. Exp. Biol. 215:2660–2667.

    Article  PubMed  CAS  Google Scholar 

  • Michel, W. C. and Derbidge, D. S. 1997. Evidence of distinct amino acid and bile salt receptors in the olfactory system of the zebrafish, Danio rerio. Brain Res. 764:179–187.

    Article  PubMed  CAS  Google Scholar 

  • Michel, W. C., Sanderson, M. J., Olson, J. K., and Lipschitz, D. L. 2003. Evidence of a novel transduction pathway mediating detection of polyamines by the zebrafish olfactory system. J. Exp. Biol. 206:1697–1706.

    Article  PubMed  CAS  Google Scholar 

  • Miklavc, P. and Valentinčič, T. 2012. Chemotopy of amino acids on the olfactory bulb predicts olfactory discrimination capabilities of zebrafish Danio rerio. Chem. Senses 37:65–75.

    Article  PubMed  CAS  Google Scholar 

  • Miyasaka, N., Morimoto, K., Tsubokawa, T., Higashijima, S., Okamoto, H., and Yoshihara, Y. 2009. From the olfactory bulb to higher brain centers: Genetic visualization of secondary olfactory pathways in zebrafish. J. Neurosci. 29:4756–4767.

    Article  PubMed  CAS  Google Scholar 

  • Ngai, J., Dowling, M. M., Buck, L., Axel, R., and Chess, A. 1993. The family of genes encoding odorant receptors in the channel catfish. Cell 72:657–666.

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuys, R. 2011. The development and general morphology of the telencephalon of actinopterygian fishes: Synopsis, documentation and commentary. Brain Struct. Funct. 215:141–157.

    Article  PubMed  Google Scholar 

  • Nieuwenhuys, R., Ten donkelaar, H. J., and Nicholson, C. 1998. Holosteans and teleosts, pp. 759–938, in The Central Nervous System of Vertebrates, Chapter 15, Volume 2. Springer-Verlag, Berlin and Heidelberg.

  • Nikonov, A. A. and Caprio, J. 2001. Electrophysiological evidence for a chemotopy of biologically relevant odors in the olfactory bulb of the channel catfish. J. Neurophysiol. 86:1869–1876.

    PubMed  CAS  Google Scholar 

  • Nikonov, A. A. and Caprio, J. 2007a. Highly specific olfactory receptor neurons for types of amino acids in the channel catfish. J. Neurophysiol. 98:1909–1918.

    Article  PubMed  CAS  Google Scholar 

  • Nikonov, A. A. and Caprio, J. 2007b. Responses of olfactory forebrain units to amino acids in the channel catfish. J. Neurophysiol. 97:2490–2498.

    Article  PubMed  CAS  Google Scholar 

  • Nikonov, A. A., Finger, T. E., and Caprio, J. 2005. Beyond the olfactory bulb: An odotopic map in the forebrain. Proc. Natl. Acad. Sci. USA 102:18688–18693.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa, K. and Caprio, J. 2010. Major differences in the proportion of amino acid fiber types transmitting taste information from oral and extraoral regions in the channel catfish. J. Neurophysiol. 103:2062–2073.

    Article  PubMed  Google Scholar 

  • Oka, Y. and Korsching, S. I. 2011. Shared and unique G alpha proteins in the zebrafish versus mammalian senses of taste and smell. Chem. Senses 36:357–365.

    Article  PubMed  CAS  Google Scholar 

  • Oka, Y., Saraiva, L. R., and Korsching, S. I. 2011. Crypt neurons express a single V1R-related ora gene. Chem. Senses 37:219–227.

    Article  PubMed  CAS  Google Scholar 

  • Pankhurst, N. W., Hilder, P. I., and Pankhurst, P. M. 1999. Reproductive condition and behavior in relation to plasma levels of gonadal steroids in the spiny damselfish Acanthochromis polyacanthus. Gen. Comp. Endocrinol. 115:53–69.

    Article  PubMed  CAS  Google Scholar 

  • Parra, K. V., Adrian Jr., J. C., and Gerlai, R. 2009. The synthetic substance hypoxanthine 3-N-oxide elicits alarm reactions in zebrafish (Danio rerio). Behav. Brain Res. 205:336–341.

    Article  PubMed  CAS  Google Scholar 

  • Pfister, P. and Rodriguez, I. 2005. Olfactory expression of a single and highly variable V1r pheromone receptor-like gene in fish species. Proc. Natl. Acad. Sci. USA 102:5489–5494.

    Article  PubMed  CAS  Google Scholar 

  • Poling, K. R., Fraser, E. J., and Sorensen, P. W. 2001. The three steroidal components of the goldfish preovulatory pheromone signal evoke different behaviors in males. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 129:645–651.

    Article  PubMed  CAS  Google Scholar 

  • Polkinghorne, C. N., Olson, J. M., Galaher, D. G., and Sorensen, P. W. 2001. Larval sea lamprey release two unique bile acids to the water at a rate sufficient to produce detectable riverine pheromone plumes. Fish Physiol. Biochem. 24:15–30.

    Article  CAS  Google Scholar 

  • Pottinger, T. G. and Moore, A. 1997. Characterization of putative steroid receptors in the membrane, cytosol and nuclear fractions from the olfactory tissue of brown and rainbow trout. Fish Physiol. Biochem. 16:45–63.

    Article  CAS  Google Scholar 

  • Poulin, R., Marcogliese, D. J., and McLaughlin, J. D. 1999. Skin-penetrating parasites and the release of alarm substances in juvenile rainbow trout. J. Fish Biol. 55:47–53.

    Article  CAS  Google Scholar 

  • Resink, J. W., Schoonen, W. G., Albers, P. C., File, D. M., Notenboom, C. D., van den Hurk, R., and van Oordt, P. G. 1989. The chemical nature of sex attracting pheromones from seminal vesicle of Africa catfish, Clarias gariepinus. Aquaculture 83:137–151.

    Article  CAS  Google Scholar 

  • Riddle, D. R., Wong, L. D., and Oakley, B. 1993. Lectin identification of olfactory receptor neuron subclasses with segregated central projections. J. Neurosci. 13:3018–3033.

    PubMed  CAS  Google Scholar 

  • Rolen, S. H., Sorensen, P. W., Mattson, D., and Caprio, J. 2003. Polyamines as olfactory stimuli in the goldfish Carassius auratus. J. Exp. Biol. 206:1683–1696.

    Article  PubMed  CAS  Google Scholar 

  • Sandulescu, C. M., Teow, R. Y., Hale, M. E., and Zhang, C. 2011. Onset and dynamic expression of S100 proteins in the olfactory organ and the lateral line system in zebrafish development. Brain Res. 1383:120–127.

    Article  PubMed  CAS  Google Scholar 

  • Sato, K. and Suzuki, N. 2000. The contribution of a Ca(2+)-activated Cl(−) conductance to amino-acid-induced inward current responses of ciliated olfactory neurons of the rainbow trout. J. Exp. Biol. 203:253–262.

    PubMed  CAS  Google Scholar 

  • Sato, K. and Suzuki, N. 2001. Whole-cell response characteristics of ciliated and microvillous olfactory receptor neurons to amino acids, pheromone candidates and urine in rainbow trout. Chem. Senses 26:1145–1156.

    Article  PubMed  CAS  Google Scholar 

  • Sato, Y., Miyasaka, N., and Yoshihara, Y. 2005. Mutually exclusive glomerular innervation by two distinct types of olfactory sensory neurons revealed in transgenic zebrafish. J. Neurosci. 25:4889–4897.

    Article  PubMed  CAS  Google Scholar 

  • Satou, M., Oka, Y., Kusunoki, M., Matsushima, T., Kato, M., Fujita, I., and Ueda, K. 1984. Telencephalic and preoptic areas integrate sexual behavior in hime salmon (landlocked red salmon, Oncorhynchus nerka): Results of electrical brain stimulation experiments. Physiol. Behav. 33:441–447.

    Article  PubMed  CAS  Google Scholar 

  • Schmachtenberg, O. 2006. Histological and electrophysiological properties of crypt cells from the olfactory epithelium of the marine teleost Trachurus symmetricus. J. Comp. Neurol. 495:113–121.

    Article  PubMed  Google Scholar 

  • Schmachtenberg, O. and Bacigalupo, J. 2004. Olfactory transduction in ciliated receptor neurons of the Cabinza grunt, Isacia conceptionis (Teleostei: Haemulidae). Eur. J. Neurosci. 20:3378–3386.

    Article  PubMed  Google Scholar 

  • Shoji, T., Ueda, H., Ohgami, T., Sakamoto, T., Katsuragi, Y., Yamauchi, K., and Kurihara, K. 2000. Amino acids dissolved in stream water as possible home stream odorants for masu salmon. Chem. Senses 25:533–540.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen, P. W. and Caprio, J. 1998. Chemoreception, pp. 375–405, in D. H. Evens (ed.), The Physiology of Fishes. CRC LLC, New York.

    Google Scholar 

  • Sorensen, P. W. and Scott, A. P. 1994. The evolution of hormonal sex pheromones in teleost fish: poor correlation between the pattern of steroid release by goldfish and olfactory sensitivity suggests that these cues evolved as a result of chemical spying rather than signal specialization. Acta Physiol. Scand. 152:191–205.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen, P. W., Hara, T. J., and Stacey, N. E. 1987. Extreme olfactory sensitivity of mature and gonadally-regressed goldfish to a potent steroidal pheromone, 17α,20β-dihydroxy-4-pregnen-3-one. J. Comp. Physiol. A 160:305–313.

    Article  CAS  Google Scholar 

  • Sorensen, P. W., Hara, T. J., Stacey, N. E., and Goetz, F. W. 1988. F prostaglandins function as potent olfactory stimulants that comprise the postovulatory female sex pheromone in goldfish. Biol. Reprod. 39:1039–1050.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen, P. W., Stacey, N. E., and Chamberlain, K. J. 1989. Differing behavioral and endocrinological effects of two female sex pheromones on male goldfish. Horm. Behav. 23:317–332.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen, P. W., Hara, T. J., Stacey, N. E., and Dulka, J. G. 1990. Extreme olfactory specificity of the male goldfish to the preovulatory steroidal pheromone 17α,20β-dihydroxy-4-pregnen-3-one. J. Comp. Physiol. A 166:373–383.

    Article  Google Scholar 

  • Sorensen, P. W., Hara, T. J., and Stacey, N. E. 1991. Sex pheromones selectively stimulate the medial olfactory tracts of male goldfish. Brain Res. 558:343–347.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen, P. W., Scott, A. P., Stacey, N. E., and Bowdin, L. 1995. Sulfated 17α,20β-dihydroxy-4-pregnen-3-one functions as a potent and specific olfactory stimulant with pheromonal actions in the goldfish. Gen. Comp. Endocrinol. 100:128–142.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen, P. W., Scott, A. P., and Kihslinger, R. L. 2000. How common hormonal metabolites function as relatively specific pheromones in the goldfish, pp. 125–129, in B. Norberg, O. S. Kjesbu, G. L. Taranger, E. Andersson, and S. O. Stefansson (eds.), Proceedings of the Sixth International Symposium on the Reproductive Physiology of Fish. Bergen, Norway.

    Google Scholar 

  • Sorensen, P. W., Pinillos, M., and Scott, A. P. 2005. Sexually mature male goldfish release large quantities of androstenedione into the water where it functions as a pheromone. Gen. Comp. Endocrinol. 140:164–175.

    Article  PubMed  CAS  Google Scholar 

  • Speca, D. J., Lin, D. M., Sorensen, P. W., Isacoff, E. Y., Ngai, J., and Dittman, A. H. 1999. Functional identification of a goldfish odorant receptor. Neuron 23:487–498.

    Article  PubMed  CAS  Google Scholar 

  • Speedie, N. and Gerlai, R. 2008. Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behav. Brain Res. 188:168–177.

    Article  PubMed  CAS  Google Scholar 

  • Spence, R., Gerlach, G., Lawrence, C., and Smith, C. 2008. The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev. Camb. Philos. Soc. 83:13–34.

    PubMed  Google Scholar 

  • Stabell, O. 1984. Homing and olfaction in salmonids: A critical review with special reference to the Atlantic salmon. Biol. Rev. Camb. Philos. Soc. 59:333–388.

    Article  CAS  Google Scholar 

  • Stacey, N. E. and Kyle, A. L. 1983. Effects of olfactory tract lesions on sexual and feeding behavior in the goldfish. Physiol. Behav. 30:621–628.

    Article  PubMed  CAS  Google Scholar 

  • Stacey, N. and Sorensen, P. W. 2005. Reproductive pheromones. Behav. Physiol. Fish 24:359–412.

    Article  Google Scholar 

  • Stacey, N. and Sorensen, P. W. 2009. Hormonal pheromones in fish. Chapter 18, pp. 639–681, in D. W. Pfaff, A. P. Arnold, A. M. Etgen, S. E. Fahrbach, and R. T. Rubin (eds.), Hormones, Brain and Behavior, 2nd ed., Vol. 1. Elsevier Press, San Diego.

    Chapter  Google Scholar 

  • Sutterlin, A. M. and Sutterlin, N. 1971. Electrical responses of the olfactory epithelium of Atlantic salmon (Salmo salar). J. Fish. Res. Board Can. 29:565–572.

    Article  Google Scholar 

  • Suzuki, N. and Tucker, D. 1971. Amino acids as olfactory stimuli in freshwater catfish, Ictalurus catus (Linn). Comp. Biochem. Physiol. A Comp. Physiol. 40:399–404.

    Article  PubMed  CAS  Google Scholar 

  • Thommesen, G. 1978. The spatial distribution of odour induced potentials in the olfactory bulb of char and trout (Salmonidae). Acta Physiol. Scand. 102:205–217.

    Article  PubMed  CAS  Google Scholar 

  • Thommesen, G. 1983. Morphology, distribution, and specificity of olfactory receptor cells in salmonid fishes. Acta Physiol. Scand. 117:241–249.

    Article  PubMed  CAS  Google Scholar 

  • Valentinčič, T., Lamb, C. F., and Caprio, J. 1999. Expression of a reflex biting/snapping response to amino acids prior to first exogenous feeding in salmonid alevins. Physiol. Behav. 67:567–572.

    Article  PubMed  Google Scholar 

  • Valentinčič, T., Kralj, J., Stenovec, M., Koce, A., and Caprio, J. 2000. The behavioral detection of binary mixtures of amino acids and their individual components by catfish. J. Exp. Biol. 203:3307–3317.

    PubMed  Google Scholar 

  • van den Hurk, R. and Lambert, J. G. D. 1983. Ovarian steroid glucuronides function as sex pheromones for male zebrafish, Brachydanio rerio. Canad. J. Zool. 61:2381–2387.

    Article  Google Scholar 

  • van den Hurk, R., Schoonen, W. G., van Zoelen, G. A., and Lambert, J. G. 1987. The biosynthesis of steroid glucuronides in the testis of the zebrafish, Brachydanio rerio, and their pheromonal function as ovulation inducers. Gen. Comp. Endocrinol. 68:179–188.

    Article  PubMed  Google Scholar 

  • Vielma, A., Ardiles, A., Delgado, L., and Schmachtenberg, O. 2008. The elusive crypt olfactory receptor neuron: evidence for its stimulation by amino acids and cAMP pathway agonists. J. Exp. Biol. 211:2417–2422.

    Article  PubMed  CAS  Google Scholar 

  • von Bartheld, C. S., Meyer, D. L., Fiebig, E., and Ebbesson, S. O. 1984. Central connections of the olfactory bulb in the goldfish, Carassius auratus. Cell Tissue Res. 238:475–487.

    Article  Google Scholar 

  • von Frisch, K. 1938. Zur psychologie des fisch-schwarmes. Naturwissenschaften 26:601–606.

    Article  Google Scholar 

  • von Rekowski, C. and Zippel, H. P. 1993. In goldfish the qualitative discriminative ability for odors rapidly returns after bilateral nerve axotomy and lateral olfactory tract transection. Brain Res. 618:338–340.

    Article  Google Scholar 

  • Weltzien, F. A., Hoglund, E., Hamdani, E. H., and Døving, K. B. 2003. Does the lateral bundle of the medial olfactory tract mediate reproductive behavior in male crucian carp? Chem. Senses 28:293–300.

    Article  PubMed  Google Scholar 

  • Whitlock, K. E. 2006. The sense of scents: Olfactory behaviors in the zebrafish. Zebrafish 3:203–213.

    Article  PubMed  CAS  Google Scholar 

  • Wisby, W. J. and Hasler, A. D. 1954. Effect of olfactory occlusion on migrating silver salmon (Oncorhynchus kisutch). J. Fish. Res. Board Can. 11:472–478.

    Article  Google Scholar 

  • Yaksi, E., Von Saint Paul, F., Niessing, J., Bundschuh, S. T., and Friedrich, R. W. 2009. Transformation of odor representations in target areas of the olfactory bulb. Nat. Neurosci. 12:474–482.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, Y. and Ueda, H. 2009. Behavioral responses by migratory chum salmon to amino acids in natal stream water. Zoolog Sci 26:778–782.

    Article  PubMed  Google Scholar 

  • Yambe, H., Kitamura, S., Kamio, M., Yamada, M., Matsunaga, S., Fusetani, N., and Yamazaki, F. 2006. L-Kynurenine, an amino acid identified as a sex pheromone in the urine of ovulated female masu salmon. Proc. Natl. Acad. Sci. USA 103:15370–15374.

    Article  PubMed  CAS  Google Scholar 

  • Zeiske, E., Theisen, B., and Breucker, H. 1992. Structure, development, and evolutionary aspects of the peripheral olfactory system, pp. 13–39, in T. J. Hara (ed.), Fish Chemoreception. Chapman and Hall, London.

    Chapter  Google Scholar 

  • Zhang, C. and Hara, T. J. 2009. Lake char (Salvelinus namaycush) olfactory neurons are highly sensitive and specific to bile acids. J. Comp. Physiol. A 195:203–215.

    Article  CAS  Google Scholar 

  • Zhang, C., Brown, S. B., and Hara, T. J. 2001. Biochemical and physiological evidence that bile acids produced and released by lake char (Salvelinus namaycush) function as chemical signals. J. Comp. Physiol. B 171:161–171.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. John T. Caprio for a critical and expert revision of the manuscript. This work was supported by FONDECYT grants 1090343 and 1120513 and the CINV Millennium Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Schmachtenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazáes, A., Olivares, J. & Schmachtenberg, O. Properties, Projections, and Tuning of Teleost Olfactory Receptor Neurons. J Chem Ecol 39, 451–464 (2013). https://doi.org/10.1007/s10886-013-0268-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0268-1

Keywords

Navigation