Journal of Chemical Ecology

, Volume 39, Issue 4, pp 507–515 | Cite as

Direct and Indirect Plant Defenses are not Suppressed by Endosymbionts of a Specialist Root Herbivore

  • Christelle A. M. Robert
  • Daniel L. Frank
  • Kristen A. Leach
  • Ted C. J. Turlings
  • Bruce E. Hibbard
  • Matthias Erb


Insect endosymbionts influence many important metabolic and developmental processes of their host. It has been speculated that they may also help to manipulate and suppress plant defenses to the benefit of herbivores. Recently, endosymbionts of the root herbivore Diabrotica virgifera virgifera have been reported to suppress the induction of defensive transcripts in maize roots, which may explain the finding of another study that once attacked plants become more susceptible to subsequent D. v. virgifera attack. To test this hypothesis, we cured D. v. virgifera from its major endosymbiont Wolbachia and tested whether endosymbiont-free individuals elicit different defense responses in maize roots. The presence of Wolbachia did not alter the induction of defense marker genes and resistance in a susceptible maize hybrid and a resistant line. Furthermore, attacked maize plants emitted the same amount of (E)-β-caryophyllene, a volatile signal that serves as foraging cue for both entomopathogenic nematodes and D. v. virgifera. Finally, the effectiveness of the entomopathogenic nematode Heterorhabditis bacteriophora to infest D. v. virgifera was not changed by curing the larvae from their endosymbionts. These results show that the defense mechanisms of maize are not affected by Wolbachia. Consequently, D. v. virgifera does not seem to derive any plant-defense mediated benefits from its major endosymbiont.


Diabrotica virgifera Zea mays Wolbachia Plant defense Suppression Entomopathogenic nematodes 



The work of C.A.M.R. is supported by a Swiss National Foundation Fellowship (grant no. 140196). The research activities of M.E. were supported by a Marie Curie Intra European Fellowship (grant no. 273107). We thank Xavier Cambet-Petit-Jean for technical assistance. Abbie Ferrieri, Martin Kaltenpoth, and two anonymous reviewers provided helpful comments on an earlier version of this manuscript.


  1. Akman Gündüz, E. and Douglas, A. E. 2009. Symbiotic bacteria enable insect to use a nutritionally inadequate diet. Proc. R. Soc. B. 276:987–991.PubMedCrossRefGoogle Scholar
  2. Baldo, L., Hotopp, J. C. D., Jolley, K. A., Bordenstein, S. R., Biber, S. A., Choudhury, R. R., Hayashi, C., Maiden, M. C. J., Tettelin, H., and Werren, J. H. 2006. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl. Environ. Microbiol. 72:7098–7110.PubMedCrossRefGoogle Scholar
  3. Barr, K. L., Hearne, L. B., Briesacher, S., Clark, T. L., and Davis, G. E. 2010. Microbial symbionts in insects influence down-regulation of defense genes in maize. PLoS One 5:e11339.PubMedCrossRefGoogle Scholar
  4. Bordenstein, S. and Rosengaus, R. B. 2005. Discovery of a novel Wolbachia supergroup in Isoptera. Curr. Microbiol. 51:393–398.PubMedCrossRefGoogle Scholar
  5. Brattig, N. W., Bazzocchi, C., Kirschning, C. J., Reiling, N., Buttner, D. W., Ceciliani, F., Geisinger, F., Hochrein, H., Ernst, M., Wagner, H., Bandi, C., and Hoerauf, A. 2004. The major surface protein of Wolbachia endosymbionts in filarial nematodes elicits immune responses through TLR2 and TLR4. J. Immunol. 173:437–445.PubMedGoogle Scholar
  6. Brownlie, J. C., Cass, B. N., Riegler, M., Witsenburg, J. J., Iturbe-Ormaetxe, I., Mcgraw, E. A., and O’neill, S. L. 2009. Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog. 5.Google Scholar
  7. Clark, T. L., Meinke, L. J., Skoda, S. R., and Foster, J. E. 2001. Occurrence of Wolbachia in selected Diabroticite (Coleoptera: Chrysomelidae) beetles. Ann. Ent. Soc. Am. 94:877–885.CrossRefGoogle Scholar
  8. Clark, E., Karley, A., and Hubbard, S. 2010. Insect endosymbionts: manipulators of insect herbivore trophic interactions? Protoplasma 244:25–51.PubMedCrossRefGoogle Scholar
  9. Cook, P. E. and McGraw, E. A. 2009. Wolbachia pipientis: an expanding bag of tricks to explore for disease control. Trends Parasitol. 26:373–375.CrossRefGoogle Scholar
  10. Dematheis, F., Kurtz, B., Vidal, S., and Smalla, K. 2012a. Microbial communities associated with the larval gut and eggs of the western corn rootworm. PLoS One 7:e44685.PubMedCrossRefGoogle Scholar
  11. Dematheis, F., Zimmerling, U., Flocco, C., Kurtz, B., Vidal, S., Kropf, S., and Smalla, K. 2012b. Multitrophic interaction in the rhizosphere of maize: root feeding of western corn rootworm larvae alters the microbial community composition. PLoS One 7:e37288.PubMedCrossRefGoogle Scholar
  12. Dobson, S. L., Marsland, E. J., and Rattanadechakul, W. 2002. Mutualistic Wolbachia infection in Aedes albopictus: accelerating cytoplasmic drive. Genetics 160:1087–1094.PubMedGoogle Scholar
  13. Engelstadter, J. and Telschow, A. 2009. Cytoplasmic incompatibility and host population structure. Heredity 103:196–207.PubMedCrossRefGoogle Scholar
  14. Erb, M., Flors, V., Karlen, D., De Lange, E., Planchamp, C., D’alessandro, M., Turlings, T. C. J., and Ton, J. 2009. Signal signature of aboveground-induced resistance upon belowground herbivory in maize. Plant J. 59:292–302.PubMedCrossRefGoogle Scholar
  15. Erb, M., Foresti, N., and Turlings, T. C. J. 2010. A tritrophic signal that attracts parasitoids to host-damaged plants withstands disruption by non-host herbivores. BMC Plant Biol. 10:247.PubMedCrossRefGoogle Scholar
  16. Erb, M., Glauser, G., and Robert, C. A. M. 2012. Induced immunity against below ground insect herbivores- activation of defenses in the absence of a jasmonate burst. J. Chem. Ecol. 38:629–640.PubMedCrossRefGoogle Scholar
  17. Felton, G. W. and Tumlinson, J. H. 2008. Plant-insect dialogs: complex interactions at the plant-insect interface. Curr. Opin. Plant Biol. 11:457–463.PubMedCrossRefGoogle Scholar
  18. Frey, M., Stettner, C., Pare, P. W., Schmelz, E. A., Tumlinson, J. H., and Gierl, A. 2000. An herbivore elicitor activates the gene for indole emission in maize. Proc. Natl. Acad. Sci. USA 97:14801–14806.PubMedCrossRefGoogle Scholar
  19. Gao, X. Q., Starr, J., Gobel, C., Engelberth, J., Feussner, I., Tumlinson, J., and Kolomiets, M. 2008. Maize 9-lipoxygenase ZmLOX3 controls development, root-specific expression of defense genes, and resistance to root-knot nematodes. Mol. Plant-Microbe Interac. 21:98–109.CrossRefGoogle Scholar
  20. Giordano, R., Jackson, J. J., and Robertson, H. M. 1997. The role of Wolbachia bacteria in reproductive incompatibilities and hybrid zones of Diabrotica beetles and Gryllus crickets. Proc. Natl. Acad. Sci. USA 94:11439–11444.PubMedCrossRefGoogle Scholar
  21. Graham, R. I., Grzywacz, D., Mushobozi, W. L., and Wilson, K. 2012. Wolbachia in a major African crop pest increases susceptibility to viral disease rather than protects. Ecol. Lett. 15(9):993–1000.PubMedCrossRefGoogle Scholar
  22. Hedges, L. M., Brownlie, J. C., O’neill, S. L., and Johnson, K. N. 2008. Wolbachia and virus protection in insects. Science 322:702–702.PubMedCrossRefGoogle Scholar
  23. Hibbard, B. E., Willmot, D. B., Flint-Garcia, S. A., and Darrah, L. L. 2007. Registration of the maize germplasm CRW3(S1)C6 with resistance to western corn rootworm. J. Plant Regist. 1:151–152.CrossRefGoogle Scholar
  24. Hilgenboecker, K., Hammerstein, P., Schlattmann, P., Telschow, A., and Werren, J. H. 2008. How many species are infected with Wolbachia? - A statistical analysis of current data. FEMS Microbiol. Lett. 281:215–220.PubMedCrossRefGoogle Scholar
  25. Hosokawa, T., Kikuchi, Y., Shimada, M., and Fukatsu, T. 2007. Obligate symbiont involved in pest status of host insect. Proc. R. Soc. Ser. B. 274:1979–1984.CrossRefGoogle Scholar
  26. Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X. Y., and Fukatsu, T. 2010. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl. Acad. Sci. USA 107:769–774.PubMedCrossRefGoogle Scholar
  27. Jackson, J. J. 1985. Diabrotica spp, pp. 237–254, in P. Singh and R. F. Moore (eds.), Handbook of insect rearing. Elsevier Science Publishers B.V, Amsterdam.Google Scholar
  28. Jeyaprakash, A. and Hoy, M. A. 2000. Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76 % of sixty-three arthropod species. Insect Mol. Biol. 9(4):393–405.PubMedCrossRefGoogle Scholar
  29. Kaiser, W., Huguet, E., Casas, J., Commin, C., and Giron, D. 2010. Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc. R. Soc. Ser. B. 277:2311–2319.CrossRefGoogle Scholar
  30. Köllner, T. G., Held, M., Lenk, C., Hiltpold, I., Turlings, T. C. J., Gershenzon, J., and Degenhardt, J. 2008. A maize (E)-beta-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20:482–494.PubMedCrossRefGoogle Scholar
  31. Kroiss, J., Kaltenpoth, M., Schneider, B., Schwinger, M. G., Hertweck, C., Maddula, R. K., Strohm, E., and Svatõs, A. 2010. Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat. Chem. Biol. 6:261–263.PubMedCrossRefGoogle Scholar
  32. Krysan, J. L., Smith, R. F., Branson, T. F., and Guss, P. L. 1980. A new subspecies of Diabrotica virgifera (Coleoptera: Chrysomelidae): description, distribution, and sexual compatibility. Ann. Ent. Soc. Am. 73:123–130.Google Scholar
  33. Kurtz, B., Karlovsky, P., and Vidal, S. 2010. Interaction between western corn rootworm (Coleoptera: Chrysomelidae) larvae and root-infecting Fusarium verticillioides. Environ. Entomol. 39:1532–1538.PubMedCrossRefGoogle Scholar
  34. Liu, J., Li, M., Li, J. M., Huang, C. J., Zhou, X. P., Xu, F. C., and Liu, S. S. 2010. Viral infection of tobacco plants improves performance of Bemisia tabaci but more so for an invasive than for an indigenous biotype of the whitefly. J. Zhejiang Univ. Science B. 11:30–40.CrossRefGoogle Scholar
  35. Mauck, K. E., De Moraes, C. M., and Mescher, M. C. 2010. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc. Natl. Acad. Sci. USA 107:3600–3605.PubMedCrossRefGoogle Scholar
  36. Montllor, C. B., Maxmen, A., and Purcell, A. H. 2002. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 27:189–195.CrossRefGoogle Scholar
  37. Negri, H., Franchini, A., Gonella, E., Daffonchio, D., Mazzoglio, P. J., Mandrioli, M., and Alma, A. 2009. Unravelling the Wolbachia evolutionary role: the reprogramming of the host genomic imprinting. Proc. R. Soc. B. 276:2485–2491.PubMedCrossRefGoogle Scholar
  38. Nowatzki, T. M., Lefko, S. A., Binning, R. R., Thompson, S. D., Spencer, T. A., and Siegfried, B. D. 2008. Validation of a novel resistance monitoring technique for corn rootworm (Coleoptera: Chrysomelidae) and event DAS-59122-7 maize. J. Appl. Entomol. 132:177–188.CrossRefGoogle Scholar
  39. Oliver, K. M., Russell, J. A., Moran, N. A., and Hunter, M. S. 2003. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl. Acad. Sci. USA 100:1803–1807.PubMedCrossRefGoogle Scholar
  40. Panteleev, D., Goryacheva, I., Andrianov, B., Reznik, N., Lazebny, O., and Kulikov, A. 2007. The endosymbiotic bacterium Wolbachia enhances the nonspecific resistance to insect pathogens and alters behavior of Drosophila melanogaster. Russ. J. Genet. 43:1066–1069.CrossRefGoogle Scholar
  41. Ramakers, C., Ruijter, J. M., Lekanne Deprez, R. H., and Moorman, A. F. M. 2003. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 339:62–66.PubMedCrossRefGoogle Scholar
  42. Rancès, E., Ye, Y. H., Woolfit, M., McGraw, E. A., and O’Neill, S. L. 2012. The relative importance of innate immune priming in Wolbachia-mediated Dengue interference. PLoS Pathog. 8:e1002548.PubMedCrossRefGoogle Scholar
  43. Rasmann, S. and Turlings, T. C. J. 2007. Simultaneous feeding by aboveground and belowground herbivores attenuates plant-mediated attraction of their respective natural enemies. Ecol. Lett. 10:926–936.PubMedCrossRefGoogle Scholar
  44. Rasmann, S., Kollner, T. G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J., and Turlings, T. C. J. 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737.PubMedCrossRefGoogle Scholar
  45. Riegler, M., Sidhu, M., Miller, W. J., and O’neill, S. L. 2005. Evidence for a global Wolbachia replacement in Drosophila melanogaster. Curr. Biol. 15:1428–1433.PubMedCrossRefGoogle Scholar
  46. Robert, C. A. M., Erb, M., Duployer, M., Zwahlen, C., Doyen, G. R., and Turlings, T. C. J. 2012a. Herbivore-induced plant volatiles mediate host selection by a root herbivore. New Phytol. 194:1061–1069.PubMedCrossRefGoogle Scholar
  47. Robert, C. A. M., Erb, M., Hibbard, B. E., French, W. B., Zwahlen, C., and Turlings, T. C. J. 2012b. A specialist root herbivore reduces plant resistance and uses an induced plant volatile to aggregate in a density-dependent manner. Funct. Ecol. 26:1429–1440.CrossRefGoogle Scholar
  48. Robert, C. A. M., Veyrat, N., Glauser, G., Marti, G., Doyen, G. R., Villard, N., Gaillard, M. D. P., Köllner, T. G., Giron, D., Body, M., Babst, B. A., Ferrieri, R. A., Turlings, T. C. J., and Erb, M. 2012c. A specialist root herbivore exploits defensive metabolites to locate nutritious tissues. Ecol. Lett. 15:55–64.PubMedCrossRefGoogle Scholar
  49. Siegfried, B. D., Waterfield, N., and French-Constant, R. H. 2005. Expressed sequence tags from Diabrotica virgifera virgifera midgut identify a coleopteran cadherin and a diversity of cathepsins. Insect Mol. Biol. 14:137–143.PubMedCrossRefGoogle Scholar
  50. Stout, M. J., Thaler, J. S., and Thomma, B. P. 2006. Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annu. Rev. Entomol. 51:663–689.PubMedCrossRefGoogle Scholar
  51. Stouthamer, R. and Luck, R. F. 1993. Influence of microbe-associated parthenogenesis on the fecundity of Trichogramma deion and T. pretiosum. Entomol. Exp. Appl. 67:183–192.CrossRefGoogle Scholar
  52. Teixeira, L., Ferreira, A., and Ashburner, M. 2008. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6:2753–2763.CrossRefGoogle Scholar
  53. Tokuda, G. and Watanabe, H. 2007. Hidden cellulases in termites: revision of an old hypothesis. Biol. Lett. 3:336–339.PubMedCrossRefGoogle Scholar
  54. Ton, J., D’alessandro, M., Jourdie, V., Jakab, G., Karlen, D., Held, M., Mauch-Mani, B., and Turlings, T. C. J. 2007a. Priming by airborne signals boosts direct and indirect resistance in maize. Plant J. 49:16–26.PubMedCrossRefGoogle Scholar
  55. Ton, J., D’alessandro, M., Jourdie, V., Jakab, G., Karlen, D., Held, M., Mauch-Mani, B., and Turlings, T. C. J. 2007b. Priming by airborne signals boosts direct and indirect resistance in maize. Plant J. 49(1):16–26.PubMedCrossRefGoogle Scholar
  56. Tsuchida, T., Koga, R., and Fukatsu, T. 2004. Host plant specialization governed by facultative symbiont. Science 303:1989.PubMedCrossRefGoogle Scholar
  57. Vavre, F., Girin, C., and Bouletreau, M. 1999. Phylogenetic status of a fecundity-enhancing Wolbachia that does not induce thelytoky in Trichogramma. Insect Mol. Biol. 8:67–72.PubMedCrossRefGoogle Scholar
  58. Weeks, A. R., Turelli, M., Harcombe, W. R., Reynolds, K. T., and Hoffmann, A. A. 2007. From parasite to mutualist: Rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biol. 5:997–1005.CrossRefGoogle Scholar
  59. Werren, J. H., Baldo, L., and Clark, M. E. 2008. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6:741–751.PubMedCrossRefGoogle Scholar
  60. Zhu-Salzman, K., Salzman, R. A., Ahn, J. E., and Koiwa, H. 2004. Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol. 134:420–431.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Christelle A. M. Robert
    • 1
    • 2
  • Daniel L. Frank
    • 3
  • Kristen A. Leach
    • 4
  • Ted C. J. Turlings
    • 1
  • Bruce E. Hibbard
    • 5
  • Matthias Erb
    • 2
  1. 1.Laboratory for Fundamental and Applied Research in Chemical Ecology (FARCE)University of NeuchâtelNeuchâtelSwitzerland
  2. 2.Root-Herbivore Interactions GroupMax-Planck Institute for Chemical EcologyJenaGermany
  3. 3.Extension Service, Agriculture and Natural Resources Unit, West Virginia UniversityMorgantownUSA
  4. 4.Division of Biological SciencesUniversity of MissouriColumbiaUSA
  5. 5.Plant Genetics Research UnitUSDA-ARSColumbiaUSA

Personalised recommendations