Skip to main content
Log in

Direct and Indirect Plant Defenses are not Suppressed by Endosymbionts of a Specialist Root Herbivore

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Insect endosymbionts influence many important metabolic and developmental processes of their host. It has been speculated that they may also help to manipulate and suppress plant defenses to the benefit of herbivores. Recently, endosymbionts of the root herbivore Diabrotica virgifera virgifera have been reported to suppress the induction of defensive transcripts in maize roots, which may explain the finding of another study that once attacked plants become more susceptible to subsequent D. v. virgifera attack. To test this hypothesis, we cured D. v. virgifera from its major endosymbiont Wolbachia and tested whether endosymbiont-free individuals elicit different defense responses in maize roots. The presence of Wolbachia did not alter the induction of defense marker genes and resistance in a susceptible maize hybrid and a resistant line. Furthermore, attacked maize plants emitted the same amount of (E)-β-caryophyllene, a volatile signal that serves as foraging cue for both entomopathogenic nematodes and D. v. virgifera. Finally, the effectiveness of the entomopathogenic nematode Heterorhabditis bacteriophora to infest D. v. virgifera was not changed by curing the larvae from their endosymbionts. These results show that the defense mechanisms of maize are not affected by Wolbachia. Consequently, D. v. virgifera does not seem to derive any plant-defense mediated benefits from its major endosymbiont.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akman Gündüz, E. and Douglas, A. E. 2009. Symbiotic bacteria enable insect to use a nutritionally inadequate diet. Proc. R. Soc. B. 276:987–991.

    Article  PubMed  Google Scholar 

  • Baldo, L., Hotopp, J. C. D., Jolley, K. A., Bordenstein, S. R., Biber, S. A., Choudhury, R. R., Hayashi, C., Maiden, M. C. J., Tettelin, H., and Werren, J. H. 2006. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl. Environ. Microbiol. 72:7098–7110.

    Article  PubMed  CAS  Google Scholar 

  • Barr, K. L., Hearne, L. B., Briesacher, S., Clark, T. L., and Davis, G. E. 2010. Microbial symbionts in insects influence down-regulation of defense genes in maize. PLoS One 5:e11339.

    Article  PubMed  Google Scholar 

  • Bordenstein, S. and Rosengaus, R. B. 2005. Discovery of a novel Wolbachia supergroup in Isoptera. Curr. Microbiol. 51:393–398.

    Article  PubMed  CAS  Google Scholar 

  • Brattig, N. W., Bazzocchi, C., Kirschning, C. J., Reiling, N., Buttner, D. W., Ceciliani, F., Geisinger, F., Hochrein, H., Ernst, M., Wagner, H., Bandi, C., and Hoerauf, A. 2004. The major surface protein of Wolbachia endosymbionts in filarial nematodes elicits immune responses through TLR2 and TLR4. J. Immunol. 173:437–445.

    PubMed  CAS  Google Scholar 

  • Brownlie, J. C., Cass, B. N., Riegler, M., Witsenburg, J. J., Iturbe-Ormaetxe, I., Mcgraw, E. A., and O’neill, S. L. 2009. Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog. 5.

  • Clark, T. L., Meinke, L. J., Skoda, S. R., and Foster, J. E. 2001. Occurrence of Wolbachia in selected Diabroticite (Coleoptera: Chrysomelidae) beetles. Ann. Ent. Soc. Am. 94:877–885.

    Article  Google Scholar 

  • Clark, E., Karley, A., and Hubbard, S. 2010. Insect endosymbionts: manipulators of insect herbivore trophic interactions? Protoplasma 244:25–51.

    Article  PubMed  Google Scholar 

  • Cook, P. E. and McGraw, E. A. 2009. Wolbachia pipientis: an expanding bag of tricks to explore for disease control. Trends Parasitol. 26:373–375.

    Article  Google Scholar 

  • Dematheis, F., Kurtz, B., Vidal, S., and Smalla, K. 2012a. Microbial communities associated with the larval gut and eggs of the western corn rootworm. PLoS One 7:e44685.

    Article  PubMed  CAS  Google Scholar 

  • Dematheis, F., Zimmerling, U., Flocco, C., Kurtz, B., Vidal, S., Kropf, S., and Smalla, K. 2012b. Multitrophic interaction in the rhizosphere of maize: root feeding of western corn rootworm larvae alters the microbial community composition. PLoS One 7:e37288.

    Article  PubMed  CAS  Google Scholar 

  • Dobson, S. L., Marsland, E. J., and Rattanadechakul, W. 2002. Mutualistic Wolbachia infection in Aedes albopictus: accelerating cytoplasmic drive. Genetics 160:1087–1094.

    PubMed  Google Scholar 

  • Engelstadter, J. and Telschow, A. 2009. Cytoplasmic incompatibility and host population structure. Heredity 103:196–207.

    Article  PubMed  CAS  Google Scholar 

  • Erb, M., Flors, V., Karlen, D., De Lange, E., Planchamp, C., D’alessandro, M., Turlings, T. C. J., and Ton, J. 2009. Signal signature of aboveground-induced resistance upon belowground herbivory in maize. Plant J. 59:292–302.

    Article  PubMed  CAS  Google Scholar 

  • Erb, M., Foresti, N., and Turlings, T. C. J. 2010. A tritrophic signal that attracts parasitoids to host-damaged plants withstands disruption by non-host herbivores. BMC Plant Biol. 10:247.

    Article  PubMed  Google Scholar 

  • Erb, M., Glauser, G., and Robert, C. A. M. 2012. Induced immunity against below ground insect herbivores- activation of defenses in the absence of a jasmonate burst. J. Chem. Ecol. 38:629–640.

    Article  PubMed  CAS  Google Scholar 

  • Felton, G. W. and Tumlinson, J. H. 2008. Plant-insect dialogs: complex interactions at the plant-insect interface. Curr. Opin. Plant Biol. 11:457–463.

    Article  PubMed  CAS  Google Scholar 

  • Frey, M., Stettner, C., Pare, P. W., Schmelz, E. A., Tumlinson, J. H., and Gierl, A. 2000. An herbivore elicitor activates the gene for indole emission in maize. Proc. Natl. Acad. Sci. USA 97:14801–14806.

    Article  PubMed  CAS  Google Scholar 

  • Gao, X. Q., Starr, J., Gobel, C., Engelberth, J., Feussner, I., Tumlinson, J., and Kolomiets, M. 2008. Maize 9-lipoxygenase ZmLOX3 controls development, root-specific expression of defense genes, and resistance to root-knot nematodes. Mol. Plant-Microbe Interac. 21:98–109.

    Article  CAS  Google Scholar 

  • Giordano, R., Jackson, J. J., and Robertson, H. M. 1997. The role of Wolbachia bacteria in reproductive incompatibilities and hybrid zones of Diabrotica beetles and Gryllus crickets. Proc. Natl. Acad. Sci. USA 94:11439–11444.

    Article  PubMed  CAS  Google Scholar 

  • Graham, R. I., Grzywacz, D., Mushobozi, W. L., and Wilson, K. 2012. Wolbachia in a major African crop pest increases susceptibility to viral disease rather than protects. Ecol. Lett. 15(9):993–1000.

    Article  PubMed  Google Scholar 

  • Hedges, L. M., Brownlie, J. C., O’neill, S. L., and Johnson, K. N. 2008. Wolbachia and virus protection in insects. Science 322:702–702.

    Article  PubMed  CAS  Google Scholar 

  • Hibbard, B. E., Willmot, D. B., Flint-Garcia, S. A., and Darrah, L. L. 2007. Registration of the maize germplasm CRW3(S1)C6 with resistance to western corn rootworm. J. Plant Regist. 1:151–152.

    Article  Google Scholar 

  • Hilgenboecker, K., Hammerstein, P., Schlattmann, P., Telschow, A., and Werren, J. H. 2008. How many species are infected with Wolbachia? - A statistical analysis of current data. FEMS Microbiol. Lett. 281:215–220.

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa, T., Kikuchi, Y., Shimada, M., and Fukatsu, T. 2007. Obligate symbiont involved in pest status of host insect. Proc. R. Soc. Ser. B. 274:1979–1984.

    Article  CAS  Google Scholar 

  • Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X. Y., and Fukatsu, T. 2010. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl. Acad. Sci. USA 107:769–774.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, J. J. 1985. Diabrotica spp, pp. 237–254, in P. Singh and R. F. Moore (eds.), Handbook of insect rearing. Elsevier Science Publishers B.V, Amsterdam.

    Google Scholar 

  • Jeyaprakash, A. and Hoy, M. A. 2000. Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76 % of sixty-three arthropod species. Insect Mol. Biol. 9(4):393–405.

    Article  PubMed  CAS  Google Scholar 

  • Kaiser, W., Huguet, E., Casas, J., Commin, C., and Giron, D. 2010. Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc. R. Soc. Ser. B. 277:2311–2319.

    Article  CAS  Google Scholar 

  • Köllner, T. G., Held, M., Lenk, C., Hiltpold, I., Turlings, T. C. J., Gershenzon, J., and Degenhardt, J. 2008. A maize (E)-beta-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20:482–494.

    Article  PubMed  Google Scholar 

  • Kroiss, J., Kaltenpoth, M., Schneider, B., Schwinger, M. G., Hertweck, C., Maddula, R. K., Strohm, E., and Svatõs, A. 2010. Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat. Chem. Biol. 6:261–263.

    Article  PubMed  CAS  Google Scholar 

  • Krysan, J. L., Smith, R. F., Branson, T. F., and Guss, P. L. 1980. A new subspecies of Diabrotica virgifera (Coleoptera: Chrysomelidae): description, distribution, and sexual compatibility. Ann. Ent. Soc. Am. 73:123–130.

    Google Scholar 

  • Kurtz, B., Karlovsky, P., and Vidal, S. 2010. Interaction between western corn rootworm (Coleoptera: Chrysomelidae) larvae and root-infecting Fusarium verticillioides. Environ. Entomol. 39:1532–1538.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J., Li, M., Li, J. M., Huang, C. J., Zhou, X. P., Xu, F. C., and Liu, S. S. 2010. Viral infection of tobacco plants improves performance of Bemisia tabaci but more so for an invasive than for an indigenous biotype of the whitefly. J. Zhejiang Univ. Science B. 11:30–40.

    Article  Google Scholar 

  • Mauck, K. E., De Moraes, C. M., and Mescher, M. C. 2010. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc. Natl. Acad. Sci. USA 107:3600–3605.

    Article  PubMed  CAS  Google Scholar 

  • Montllor, C. B., Maxmen, A., and Purcell, A. H. 2002. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 27:189–195.

    Article  Google Scholar 

  • Negri, H., Franchini, A., Gonella, E., Daffonchio, D., Mazzoglio, P. J., Mandrioli, M., and Alma, A. 2009. Unravelling the Wolbachia evolutionary role: the reprogramming of the host genomic imprinting. Proc. R. Soc. B. 276:2485–2491.

    Article  PubMed  CAS  Google Scholar 

  • Nowatzki, T. M., Lefko, S. A., Binning, R. R., Thompson, S. D., Spencer, T. A., and Siegfried, B. D. 2008. Validation of a novel resistance monitoring technique for corn rootworm (Coleoptera: Chrysomelidae) and event DAS-59122-7 maize. J. Appl. Entomol. 132:177–188.

    Article  Google Scholar 

  • Oliver, K. M., Russell, J. A., Moran, N. A., and Hunter, M. S. 2003. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl. Acad. Sci. USA 100:1803–1807.

    Article  PubMed  CAS  Google Scholar 

  • Panteleev, D., Goryacheva, I., Andrianov, B., Reznik, N., Lazebny, O., and Kulikov, A. 2007. The endosymbiotic bacterium Wolbachia enhances the nonspecific resistance to insect pathogens and alters behavior of Drosophila melanogaster. Russ. J. Genet. 43:1066–1069.

    Article  CAS  Google Scholar 

  • Ramakers, C., Ruijter, J. M., Lekanne Deprez, R. H., and Moorman, A. F. M. 2003. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 339:62–66.

    Article  PubMed  CAS  Google Scholar 

  • Rancès, E., Ye, Y. H., Woolfit, M., McGraw, E. A., and O’Neill, S. L. 2012. The relative importance of innate immune priming in Wolbachia-mediated Dengue interference. PLoS Pathog. 8:e1002548.

    Article  PubMed  Google Scholar 

  • Rasmann, S. and Turlings, T. C. J. 2007. Simultaneous feeding by aboveground and belowground herbivores attenuates plant-mediated attraction of their respective natural enemies. Ecol. Lett. 10:926–936.

    Article  PubMed  Google Scholar 

  • Rasmann, S., Kollner, T. G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J., and Turlings, T. C. J. 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737.

    Article  PubMed  CAS  Google Scholar 

  • Riegler, M., Sidhu, M., Miller, W. J., and O’neill, S. L. 2005. Evidence for a global Wolbachia replacement in Drosophila melanogaster. Curr. Biol. 15:1428–1433.

    Article  PubMed  CAS  Google Scholar 

  • Robert, C. A. M., Erb, M., Duployer, M., Zwahlen, C., Doyen, G. R., and Turlings, T. C. J. 2012a. Herbivore-induced plant volatiles mediate host selection by a root herbivore. New Phytol. 194:1061–1069.

    Article  PubMed  CAS  Google Scholar 

  • Robert, C. A. M., Erb, M., Hibbard, B. E., French, W. B., Zwahlen, C., and Turlings, T. C. J. 2012b. A specialist root herbivore reduces plant resistance and uses an induced plant volatile to aggregate in a density-dependent manner. Funct. Ecol. 26:1429–1440.

    Article  Google Scholar 

  • Robert, C. A. M., Veyrat, N., Glauser, G., Marti, G., Doyen, G. R., Villard, N., Gaillard, M. D. P., Köllner, T. G., Giron, D., Body, M., Babst, B. A., Ferrieri, R. A., Turlings, T. C. J., and Erb, M. 2012c. A specialist root herbivore exploits defensive metabolites to locate nutritious tissues. Ecol. Lett. 15:55–64.

    Article  PubMed  Google Scholar 

  • Siegfried, B. D., Waterfield, N., and French-Constant, R. H. 2005. Expressed sequence tags from Diabrotica virgifera virgifera midgut identify a coleopteran cadherin and a diversity of cathepsins. Insect Mol. Biol. 14:137–143.

    Article  PubMed  CAS  Google Scholar 

  • Stout, M. J., Thaler, J. S., and Thomma, B. P. 2006. Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annu. Rev. Entomol. 51:663–689.

    Article  PubMed  CAS  Google Scholar 

  • Stouthamer, R. and Luck, R. F. 1993. Influence of microbe-associated parthenogenesis on the fecundity of Trichogramma deion and T. pretiosum. Entomol. Exp. Appl. 67:183–192.

    Article  Google Scholar 

  • Teixeira, L., Ferreira, A., and Ashburner, M. 2008. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6:2753–2763.

    Article  CAS  Google Scholar 

  • Tokuda, G. and Watanabe, H. 2007. Hidden cellulases in termites: revision of an old hypothesis. Biol. Lett. 3:336–339.

    Article  PubMed  CAS  Google Scholar 

  • Ton, J., D’alessandro, M., Jourdie, V., Jakab, G., Karlen, D., Held, M., Mauch-Mani, B., and Turlings, T. C. J. 2007a. Priming by airborne signals boosts direct and indirect resistance in maize. Plant J. 49:16–26.

    Article  PubMed  CAS  Google Scholar 

  • Ton, J., D’alessandro, M., Jourdie, V., Jakab, G., Karlen, D., Held, M., Mauch-Mani, B., and Turlings, T. C. J. 2007b. Priming by airborne signals boosts direct and indirect resistance in maize. Plant J. 49(1):16–26.

    Article  PubMed  CAS  Google Scholar 

  • Tsuchida, T., Koga, R., and Fukatsu, T. 2004. Host plant specialization governed by facultative symbiont. Science 303:1989.

    Article  PubMed  CAS  Google Scholar 

  • Vavre, F., Girin, C., and Bouletreau, M. 1999. Phylogenetic status of a fecundity-enhancing Wolbachia that does not induce thelytoky in Trichogramma. Insect Mol. Biol. 8:67–72.

    Article  PubMed  CAS  Google Scholar 

  • Weeks, A. R., Turelli, M., Harcombe, W. R., Reynolds, K. T., and Hoffmann, A. A. 2007. From parasite to mutualist: Rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biol. 5:997–1005.

    Article  CAS  Google Scholar 

  • Werren, J. H., Baldo, L., and Clark, M. E. 2008. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6:741–751.

    Article  PubMed  CAS  Google Scholar 

  • Zhu-Salzman, K., Salzman, R. A., Ahn, J. E., and Koiwa, H. 2004. Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol. 134:420–431.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work of C.A.M.R. is supported by a Swiss National Foundation Fellowship (grant no. 140196). The research activities of M.E. were supported by a Marie Curie Intra European Fellowship (grant no. 273107). We thank Xavier Cambet-Petit-Jean for technical assistance. Abbie Ferrieri, Martin Kaltenpoth, and two anonymous reviewers provided helpful comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Erb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robert, C.A.M., Frank, D.L., Leach, K.A. et al. Direct and Indirect Plant Defenses are not Suppressed by Endosymbionts of a Specialist Root Herbivore. J Chem Ecol 39, 507–515 (2013). https://doi.org/10.1007/s10886-013-0264-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0264-5

Keywords

Navigation