Skip to main content
Log in

Evidence Does not Support a Role for Gallic Acid in Phragmites australis Invasion Success

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Gallic acid has been reported to be responsible for the invasive success of nonnative genotypes of Phragmites australis in North America. We have been unable to confirm previous reports of persistent high concentrations of gallic acid in the rhizosphere of invasive P. australis, and of high concentrations of gallic acid and gallotannins in P. australis rhizomes. The half-life of gallic acid in nonsterile P. australis soil was measured by aqueous extraction of soils and found to be less than 1 day at added concentrations up to 10,000 μg g−1. Furthermore, extraction of P. australis soil collected in North Carolina showed no evidence of gallic acid, and extractions of both rhizomes and leaves of samples of four P. australis populations confirmed to be of invasive genotype show only trace amounts of gallic acid and/or gallotannins. The detection limits were less than 20 μg gallic acid g−1 FW in the rhizome samples tested, which is approximately 0.015 % of the minimum amount of gallic acid expected based on previous reports. While the occurrence of high concentrations of gallic acid and gallotannins in some local populations of P. australis cannot be ruled out, our results indicate that exudation of gallic acid by P. australis cannot be a primary, general explanation for the invasive success of this species in North America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrell, J., McDonald, E. P., and Lindroth, R. L. 2000. Effects of CO2 and light on tree phytochemistry and insect performance. Oikos 88:259–272.

    Article  CAS  Google Scholar 

  • Bains, G., Kumar, A. S., Rudrappa, T., Alff, E., Hanson, T. E., and Bais, H. P. 2009. Native plant and microbial contributions to a negative plant-plant interaction. Plant Physiol. 151:1699–1700.

    Article  Google Scholar 

  • Barto, E. K., Hilker, M., Müller, F., Mohney, B. K., Weidenhamer, J. D., and Rillig, M. C. 2011. The fungal fast lane: Common mycorrhizal networks extend bioactive zones of allelochemicals in soils. PLoS One 6:e27195.

    Article  PubMed  CAS  Google Scholar 

  • Bertin, C., Harmon, R., Akaogi, M., Weidenhamer, J. D., and Weston, L. A. 2009. Assessment of the phytotoxic potential of m-tyrosine in laboratory soil bioassays. J. Chem. Ecol. 35:1288–1294.

    Article  PubMed  CAS  Google Scholar 

  • Blair, A. C., Hanson, B. D., Brunk, G. R., Marrs, R. A., Westra, P., Nissen, S. J., and Hufbauer, R. A. 2005. New techniques and findings in the study of a candidate allelochemical implicated in invasion success. Ecol. Lett. 8:1039–1047.

    Article  Google Scholar 

  • Blair, A. C., Weston, L. A., Nissen, S. J., Brunk, G. R., and Hufbauer, R. A. 2009. The importance of analytical techniques in allelopathy studies with the reported allelochemical catechin as an example. Biol Invasions 11:325–332.

    Article  Google Scholar 

  • Blum, U. 1998. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J. Chem. Ecol. 24:685–708.

    Article  CAS  Google Scholar 

  • Blum, U., Staman, K. L., Flint, L. J., and Shafer, S. R. 2000. Induction and/or selection of phenolic acids-utilizing bulk-soil and rhizosphere bacteria and their influence on phenolic acid phytotoxicity. J. Chem. Ecol. 26:2059–2078.

    Article  CAS  Google Scholar 

  • Callaway, R. M. and Ridenour, W. M. 2004. Novel weapons: Invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2:436–443.

    Article  Google Scholar 

  • Cecchi, A., Koskinen, W., Cheng, H., and Haider, K. 2004. Sorption–desorption of phenolic acids as affected by soil properties. Biol Fertil. Soils. 39:235–242.

    Article  CAS  Google Scholar 

  • Choi, S.-E., Yoon, J.-H., Choi, H.-K., and Lee, M.-W. 2009. Phenolic compounds from the root of Phragmites communis. Chem. Nat. Compd. 45:893–895.

    Article  CAS  Google Scholar 

  • Chung, I. M., Kim, K. H., Ahn, J. K., Chun, S. C., Kim, C. S., Kim, J. T., and Kim, S. H. 2002. Screening of allelochemicals on barnyardgrass (Echinochloa crus-galli) and identification of potentially allelopathic compounds from rice (Oryza sativa) variety hull extracts. Crop. Prot. 21:913–920.

    Article  CAS  Google Scholar 

  • Dalton, B. R., Blum, U., and Weed, S. B. 1989. Plant phenolic acids in soils: Sorption of ferulic acid by soil and soil components sterilized by different techniques. Soil Biol. Biochem. 21:1011–1018.

    Article  CAS  Google Scholar 

  • Doyle, J. J. and Doyle, J. L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:11–15.

    Google Scholar 

  • Gaspar, E. M. S. M. and Lucena, A. F. F. 2009. Improved HPLC methodology for food control—furfurals and patulin as markers of quality. Food Chem. 114:1576–1582.

    Article  CAS  Google Scholar 

  • Gross, E. M. 2003. Differential response of tellimagrandin II and total bioactive hydrolysable tannins in an aquatic angiosperm to changes in light and nitrogen. Oikos 103:497–504.

    Article  CAS  Google Scholar 

  • Hagerman, A. E., Robbins, C. T., Weerasuriya, Y., Wilson, T. C., and McArthur, C. 1992. Tannin chemistry in relation to digestion. J. Range Manage. 45:57–62.

    Article  Google Scholar 

  • Halvorson, J. J., Gollany, H. T., Kennedy, A. C., Hagerman, A. E., Gonzalez, J. M., and Wuest, S. B. 2012. Sorption of tannin and related phenolic compounds and effects on extraction of soluble-N in soil amended with several carbon sources. Agriculture 2:52–72.

    Article  CAS  Google Scholar 

  • Harborne, J. B. 1984. Phytochemical Methods: A Guide to Modern Methods of Plant Analysis, 2nd ed. Chapman and Hall, London.

    Google Scholar 

  • Hendricks, L. G., Mossop, H. E., and Kicklighter, C. E. 2011. Palatability and chemical defense of Phragmites australis to the marsh periwinkle snail Littoraria irrorata. J. Chem. Ecol. 37:838–845.

    Article  PubMed  CAS  Google Scholar 

  • Inderjit 2005. Soil microorganisms: An important determinant of allelopathic activity. Plant Soil 274:227–236.

    Article  CAS  Google Scholar 

  • Inderjit, Bajpai, D., and Rajeswari, M. S. 2010. Interaction of 8-hydroxyquinoline with soil environment mediates its ecological function. PLoS One 5:e12852.

    Article  PubMed  Google Scholar 

  • Kaur, H., Kaur, R., Kaur, S., Baldwin, I. T., and Inderjit 2009. Taking ecological function seriously: Soil microbial communities can obviate allelopathic effects of released metabolites. PLoS One 4:e4700.

    Article  PubMed  Google Scholar 

  • Kinraide, T. B. and Hagerman, A. E. 2010. Interactive intoxicating and ameliorating effects of tannic acid, aluminum (Al3+), copper (Cu2+), and selenate (SeO4 2−) in wheat roots: A descriptive and mathematical assessment. Physiol. Plant. 139:68–79.

    Article  PubMed  CAS  Google Scholar 

  • Krogh, S. S., Mensz, S. J. M., Nielsen, S. T., Mortensen, A. G., Christophersen, C., and Fomsgaard, I. S. 2006. Fate of benzoxazinone allelochemicals in soil after incorporation of wheat and rye sprouts. J. Agric. Food Chem. 54:1064–1074.

    Article  PubMed  CAS  Google Scholar 

  • Laponen, J., Ossipov, V., Lempa, K., Haukioja, E., and Pihlaja, K. 1998. Concentrations and among-compound correlations of individual phenolics in white birch leaves under air pollution stress. Chemosphere 37:1445–1456.

    Article  Google Scholar 

  • Li, F.-M. and Hu, H.-Y. 2005. Isolation and characterization of a novel antialgal allelochemical from Phragmites communis. Appl. Environ. Microbiol. 11:6545–6553.

    Article  Google Scholar 

  • Mal, T. K. and Narine, L. 2004. The biology of Canadian weeds. 129. Phragmites australis (Cav.) Trin. ex Steud. Can. J. Plant. Sci. 84:365–396.

    Article  Google Scholar 

  • Ramírez-Jiménez, A., García-Villanova, B., and Guerra-Hernández, E. 2000. Hydroxymethylfurfural and methylfurfural content of selected bakery products. Food Res. Int. 33:833–838.

    Article  Google Scholar 

  • Reigosa, M. J., Souto, X. C., and González, L. 1999. Effect of phenolic compounds on the germination of six weeds species. Plant. Growth. Regul. 28:83–88.

    Article  CAS  Google Scholar 

  • Rudrappa, T. and Bais, H. P. 2008. Genetics, novel weapons and rhizospheric microcosmal signaling in the invasion of Phragmites australis. Plant Signal. Behav. 3:1–5.

    Article  PubMed  Google Scholar 

  • Rudrappa, T., Bonsall, J., Gallagher, J. L., Seliskar, D. M., and Bais, H. P. 2007. Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity. J. Chem. Ecol. 33:1898–1918.

    Article  PubMed  CAS  Google Scholar 

  • Rudrappa, T., Choi, Y. S., Levia, D. F., Legates, D. R., Lee, K. H., and Bais, H. P. 2009. Phragmites australis root secreted phytotoxin undergoes photo-degradation to execute severe phytotoxicity. Plant Signal. Behav. 4:506–513.

    Article  PubMed  CAS  Google Scholar 

  • Salminen, J.-P., Ossipov, V., Haukioja, E., and Pihlaja, K. 2001. Seasonal variation in the content of hydrolysable tannins in leaves of Betula pubescens. Phytochemistry 57:15–22.

    Article  PubMed  CAS  Google Scholar 

  • Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc. Natl. Acad. Sci. USA 99:2445–2449.

    Article  PubMed  CAS  Google Scholar 

  • Saltonstall, K. 2003. A rapid method for identifying the origin of North American Phragmites populations using RFLP analysis. Wetlands 23:1043–1047.

    Article  Google Scholar 

  • Schmidt, S. K. 1988. Degradation of juglone by soil bacteria. J. Chem. Ecol. 14:1561–1571.

    Article  CAS  Google Scholar 

  • Schmidt, M. A., Halvorson, J. J., Gonzalez, J. M., and Hagerman, A. E. 2012. Kinetics and binding capacity of six soils for structurally defined hydrolysable and condensed tannins and related phenols. J Soils. Sediments. 12:366–375.

    Article  CAS  Google Scholar 

  • Sosa, T., Valares, C., Alías, J. C., and Lobón, N. C. 2010. Persistence of flavonoids in Cistus ladanifer soils. Plant Soil 337:51–63.

    Article  CAS  Google Scholar 

  • Weidenhamer, J. D. and Romeo, J. T. 1989. Allelopathic properties of Polygonella myriophylla: Field evidence and bioassays. J. Chem. Ecol. 15:1957–1969.

    Article  Google Scholar 

  • Weidenhamer, J. D. and Romeo, J. T. 2004. Allelochemicals of Polygonella myriophylla: Chemistry and soil degradation. J. Chem. Ecol. 30:1061–1078.

    Google Scholar 

  • Weidenhamer, J. D., Hartnett, D. C., and Romeo, J. T. 1989. Density-dependent phytotoxicity: Distinguishing resource competition and allelopathic interference in plants. J. App. Ecol. 26:613–624.

    Article  CAS  Google Scholar 

  • Weidenhamer, J. D. and Romeo, J. T. 2005. Allelopathy as a mechanism for resisting invasion: The case of Polygonella myriophylla, pp. 167–177, in Inderjit (ed.) Invasive Plants: Ecological and Agricultural Aspects. Birkhauser Verlag, Switzerland.

Download references

Acknowledgments

This work was supported by a grant from the National Science Foundation (CHE/MRI-0922921) for the JEOL ECS-400 NMR spectrometer used in these studies, and by the Choose Ohio First Scholarship program of the Ohio Board of Regents (JA). Dr. Eric Bodle and Dr. Frank Bockhoff of WIL Research (Ashland, OH) provided assistance with LC-MS analysis of 5-HMF. Dr. Soren Brauner provided technical assistance with the genotyping techniques used in this study, and Dr. Ann Hagerman advised regarding the analytical procedures for gallic acid and gallotannins. Dr. Leslie Weston and Dr. Udo Blum provided helpful comments which improved this manuscript. The Ashland University Marine Biology class (BIO 412) assisted with the collection of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D. Weidenhamer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Mass spectrum of 5-hydroxymethylfurfural isolated from Phragmites australis extract (A) compared to NIST library spectrum (B). (JPEG 56 kb)

High Resolution Image

(TIFF 178 kb)

Supplemental Fig. 2

Mass spectrum of suspected 2-methoxy-4-vinylphenol isolated from Phragmites australis extract (A) compared to NIST library spectrum (B). (JPEG 54 kb)

High Resolution Image

(TIFF 173 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weidenhamer, J.D., Li, M., Allman, J. et al. Evidence Does not Support a Role for Gallic Acid in Phragmites australis Invasion Success. J Chem Ecol 39, 323–332 (2013). https://doi.org/10.1007/s10886-013-0242-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0242-y

Keywords

Navigation