Advertisement

Journal of Chemical Ecology

, Volume 39, Issue 2, pp 175–185 | Cite as

The Role of Momilactones in Rice Allelopathy

Review Article

Abstract

Large field screening programs and laboratory experiments in many countries have indicated that rice is allelopathic and releases allelochemical(s) into its environment. A number of compounds, such as phenolic acids, fatty acids, phenylalkanoic acids, hydroxamic acids, terpenes, and indoles, have been identified as potential rice allelochemicals. However, the studies reviewed here demonstrate that the labdane-related diterpenoid momilactones are the most important, with momilactone B playing a particularly critical role. Rice plants secrete momilactone B from their roots into the neighboring environments over their entire life cycle at phytotoxic levels, and momilactone B seems to account for the majority of the observed rice allelopathy. In addition, genetic studies have shown that selective removal of the momilactones only from the complex mixture found in rice root exudates significantly reduces allelopathy, demonstrating that these serve as allelochemicals, the importance of which is reflected in the presence of a dedicated momilactone biosynthetic gene cluster in the rice genome.

Keywords

Allelopathy Allelochemical Ecosystem Momilactone Phenolic acid Oryza sativa Root exudate 

References

  1. Atawong, A., Hasegawa, M., Kodama, O. 2002. Biosynthesis of rice phytoalexin: enzymatic conversion of 3β-hydroxy-9β-pimara-7, 15-dien-19,6β-olide to momilactone A. Biosci. Biotechnol. Biochem. 66, 566–570.Google Scholar
  2. Azmi, M., Abdullah, M. Z., and Fujii, Y. 2000. Exploratory study on allelopathic effect of selected Malaysian rice varieties and rice field weed species. J. Trop. Agric. Food Sci. 28:39–54.Google Scholar
  3. Badri, D. V. and Vivanco, J. M. 2009. Regulation and function of root exudates. Plant Cell Environ. 32:666–681.PubMedGoogle Scholar
  4. Bais, H. P., Park, S.-W., Weir, T. L., Callaway, R. M., and Vivanco, J. M. 2004. How plants communicate using the underground information superhighway. Trends Plant Sci. 9:26–32.PubMedGoogle Scholar
  5. Belz, R. G. and Hurle, K. 2005. Differential exudation of two benzoxazinoids: some of the determining factors for seedling allelopathy of Triticeae species. J. Agri. Food Chem. 53:250–261.Google Scholar
  6. Belz, R. G. 2007. Allelopathy in crop/weed interactions - an update. Pest. Manag. Sci. 63:308–326.PubMedGoogle Scholar
  7. Bi, H. H., Zeng, R. Z., Su, L. M., An, M., and Luo, S. H. 2007. Rice allelopathy induced by methyl jasmonate and methyl salicylate. J. Chem. Ecol. 33:1089–1103.PubMedGoogle Scholar
  8. Cartwright, D., Langcake, P., Pryce, R. J., Leworthy, D. P., and Ride, J. P. 1977. Chemical activation of host defence mechanisms as a basis for crop protection. Nature 267:511–513.Google Scholar
  9. Cartwright, D. W., Langcake, P., Pryce, R. J., Leworthy, D. P., and Ride, J. P. 1981. Isolation and characterization of two phytoalexins from rice as momilactones A and B. Phytochemistry 20:535–537.Google Scholar
  10. Chou, C.-H. and Lin, H.-J. 1976. Autointoxication mechanism of Oryza sativa. I. Phytotoxic effects of decomposing rice residues in soil. J. Chem. Ecol. 2:353–367.Google Scholar
  11. Chou, C.-H. and Chiou, S.-J. 1979. Autointoxication mechanism of Oryza sativa. II. Effects of culture treatments on the chemical nature of paddy soil and on rice productivity. J. Chem. Ecol. 5:839–859.Google Scholar
  12. ChunG, I.-M., Hahn, S.-J., and Ahmad, A. 2005. Confirmation of potential herbicidal agents in hulls of rice, Oryza sativa. J. Chem. Ecol. 31:1339–1352.PubMedGoogle Scholar
  13. Chung, I.-M., Kim, T. K., and Kim, S.-H. 2006. Evaluation of allelopathic potential and quantification of momilactone A, B from rice hull extracts and assessment of inhibitory bioactivity on paddy field weeds. J. Agric. Food. Chem. 54:2527–2536.PubMedGoogle Scholar
  14. Czarnota, M., Paul, R. N., Weston, L. A., and Duke, S. O. 2003. Anatomy of sorgoleone-secreting root hairs of Sorghum species. Inter. J. Plant Sci. 164:861–866.Google Scholar
  15. Dalton, B. R. 1999. The occurrence and behavior of plant phenolic acids in soil environments and their potential involvement in allelochemical interference interactions: Methodological limitations in establishing conclusive proof of allelopathy, pp. 57–74, in K. M. M. D. Inderjit and C. L. Foy (eds.), Principles and Practices in Plant Ecology: Allelochemical Interactions. CRC Press, Boca Raton, Florida.Google Scholar
  16. Dayan, F. E. 2006. Factors modulating the levels of the allelochemical sorgolene in Sorghum bicolor. Planta 224:339–346.PubMedGoogle Scholar
  17. Dilday, R. H., Nastasi, P., and Smith Jr., R. J. 1989. Allelopathic observations in rice (Oryza sativa L.) to ducksalad (Heteranthera limosa). Proc. Arkansas. Acad. Sci. 43:21–22.Google Scholar
  18. Dilday, R. H., Lin, J., and Yan, W. 1994. Identification of allelopathy in the USDA-ARS rice germplasm collection. Aust. J. Exp. Agric. 34:907–910.Google Scholar
  19. Dilday, R. H., Yan, W. G., Moldenhauer, K. A. K., and Gravois, K. A. 1998. Allelopathic activity in rice for controlling major aquatic weeds, pp. 7–26, in M. Olofsdotter (ed.), Allelopathy in Rice. International Rice Research Institute, Manila.Google Scholar
  20. Dillon, V. M., Overton, J., Grayer, R. J., and Harborne, J. B. 1997. Differences in phytoalexin response among rice cultivars of different resistance to blast. Phytochemistry 44:599–603.Google Scholar
  21. Einhellig, F. A. 1996. Interactions involving allelopathy in cropping systems. Agron. J. 88:886–893.Google Scholar
  22. Field, B., Jordan, F., and Osbourn, A. 2006. First encounters – deployment of defence-related natural products by plants. New Phytol. 172:193–207.PubMedGoogle Scholar
  23. Fisher, R.A. 1930. The Genetical Theory of Natural Selection. Oxford University Press. 103 p.Google Scholar
  24. Fuerst, E. P. and Putnam, A. R. 1983. Separating the competitive and allelopathic components of interference: Theoretical principles. J. Chem. Ecol. 9:937–944.Google Scholar
  25. Fujii, Y. 1992. The potential biological control of paddy weed with allelopathy: Allelopathic effect of some rice varieties, pp. 305-320 in Proc. Int. Symp. on Biological Control and Integrated Management of Paddy and Aquatic Weeds in Asia, Tsukuba, Japan.Google Scholar
  26. Fukuta, M., Xuan, T. D., Deba, F., Tawata, S., Khanh, T. D., and Chung, I. M. 2007. Comparative efficacies in vitro of antibacterial, fungicidal, antioxidant, and herbicidal activities of momilatones A and B. J. Plant Interac. 2:245–251.Google Scholar
  27. Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43:205–227.PubMedGoogle Scholar
  28. Halim, V. A., Vess, A., Scheel, D., and Rosahl, S. 2006. The role of salicylic acid and jasmonic acid in pathogen defence. Plant Biol. 8:307–313.PubMedGoogle Scholar
  29. Hartley, R. D. and Whitehead, D. C. 1985. Phenolic acids in soils and their influence on plant growth and soil microbial processes, pp. 109–262, in D. Vaugham and R. E. Malcolm (eds.), Soil Organic Matter and Biological Activity. Development in Plant and Soil Sciences. Vol. 16. Martinus Nijhoff & Dr W. Junk Publishers, Dordrecht.Google Scholar
  30. Hasegawa, M., Mitsuhara, I., Seo, S., Imai, T., Koga, J., Okada, K., Yamane, H., and Ohashi, Y. 2010. Phytoalexin accumulation in the interaction between rice and the blast fungus. Mol. Plant-Micro. Intrac. 23:1000–1011.Google Scholar
  31. Hassan, S. M., Aidy, I. R., Bastawisi, A. O., and Draz, A. E. 1998. Weed management using allelopathic rice varieties in Egypt, pp. 27–37, in M. Olofsdotter (ed.), Allelopathy in Rice. International Rice Research Institute, Manila.Google Scholar
  32. Haugland, E. and Brandsaeter, L. O. 1996. Experiments on bioassay sensitivity in the study of allelopathy. J. Chem. Ecol. 22:845–1859.Google Scholar
  33. Hawes, M. C., Gunawardena, U., Miyasaka, S., and Zhao, X. 2000. The role of root border cells in plant defense. Trends Plant Sci. 5:128–133.PubMedGoogle Scholar
  34. Hu, F. D. and Jones, R. J. 1997. Effects of plant extracts of Bothriochloa pertusa and Urochloa mosambicensis on seed germination and seedling growth of Stylosanthes hamata cv. Verano and Stylosanthes scabra cv. Seca. Aust. J. Exp. Agric. Res. 48:257–1264.Google Scholar
  35. Inderjit 1996. Plant phenolics in allelopathy. Bot. Rev. 62:186–202.Google Scholar
  36. Inderjit and Olosfsdotter, M. 1998. Using and improving laboratory bioassays in rice allelopathy research, pp. 44–55, in M. Olofsdotter (ed.), Allelopathy in Rice. International Rice Research Institute, Manila.Google Scholar
  37. Jeon, J. S., Lee, S., Jung, K. H., Jun, S. H., Jeong, D. H., Lee, J., Kim, C., Jang, S., Yang, K., Nam, J., An, K., Han, M. J., Sung, R. J., Choi, H. S., Yu, J. H., Choi, J. H., Cho, S. Y., Cha, S. S., Kim, S. I., and An, G. 2000. T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22:561–570.PubMedGoogle Scholar
  38. Jiang, S.-Y. and Ramachandran, S. 2010. Assigning biological functions to rice genes by genome annotation, expression analysis and mutagenesis. Biotechnol. Lett. 32:1753–1763.PubMedGoogle Scholar
  39. Jung, Y.-H., Lee, J.-H., Agrawal, G. K., Rakwal, R., Kim, J.-A., Shim, J.-K., Lee, S.-K., Jeon, J.-S., Koh, H.-J., Lee, Y.-H., Iwahashi, H., and Jwa, N.-S. 2005. The rice (Oryza sativa) blast lesion mimic mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiol. Biochem. 43:397–406.PubMedGoogle Scholar
  40. Kato, T., Kabuto, C., Sasaki, N., Tsunagawa, M., Aizawa, H., Fujita, K., Kato, Y., and Kitahara, Y. 1973. Momilactones, growth inhibitors from rice, Oryza sativa L. Tetrahedron Lett. 39:3861–3864.Google Scholar
  41. Kato, T., Tsunakawa, M., Sasaki, N., Aizawa, H., Fujita, K., Kitahara, Y., and Takahashi, N. 1977. Growth and germination inhibitors in rice husks. Phytochemistry 16:45–48.Google Scholar
  42. Kato-Noguchi, H. and Ino, T. 2001. Assessment of allelopathic potential of root exudate of rice seedlings. Biol. Plant. 44:635–638.Google Scholar
  43. Kato-Noguchi, H., Ino, T., Sata, N., and Yamamura, S. 2002. Isolation and identification of a potent allelopathic substance in rice root exudates. Physiol. Plant. 115:401–405.PubMedGoogle Scholar
  44. Kato-Noguchi, H. and Ino, T. 2003. Rice seedlings release momilactone B into the environment. Phytochemistry 63:551–554.PubMedGoogle Scholar
  45. Kato-Noguchi, H., Ino, T., and Ichii, M. 2003. Changes in release level of momilactone B into the environment from rice throughout its life cycle. Func. Plant Biol. 30:995–997.Google Scholar
  46. Kato-Noguchi, H. 2004. Allelopathic substance in rice root exudates: rediscovery of momilactone B as an allelochemical. J. Plant Physiol. 161:271–276.PubMedGoogle Scholar
  47. Kato-Noguchi, H., Kujime, H., and Ino, T. 2007. UV-induced momilactone B accumulation in rice rhizosphere. J. Plant Physiol. 164:1548–1551.PubMedGoogle Scholar
  48. Kato-Noguchi, H., Ota, K., and Ino, T. 2008a. Release of momilactone A and B from rice plants into the rhizosphere and its bioactivities. Allelopathy J. 22:321–328.Google Scholar
  49. Kato-Noguchi, H., Ino, T., and Ota, K. 2008b. Secretion of momilactone A from rice roots to the rhizosphere. J Plant Physiol 165:691–696.PubMedGoogle Scholar
  50. Kato-Noguchi, H., Kobayashi, K., and Shigemori, H. 2009. Allelopathy of the moss Hypnum plumaeforme by the production of momilactone A and B. Weed Res. 49:621–627.Google Scholar
  51. Kato-Noguchi, H., Hasegawa, M., Ino, T., Ota, K., and Kujime, H. 2010. Contribution of momilactone A and B to rice allelopathy. J. Plant Physiol. 167:787–791.PubMedGoogle Scholar
  52. Kato-Noguchi, H. 2011. Barnyard grass-induced rice allelopathy and momilactone B. J. Plant Physiol. 168:1016–1020.PubMedGoogle Scholar
  53. Khanh, T. D., Xuan, T. D., and Chung, I. M. 2007. Rice allelopathy and the possibility for weed management. Annal. Appl. Biol. 151:325–339.Google Scholar
  54. Kim, K. U. and Shin, D. H. 1998. Rice allelopathy research in Korea, pp. 39–43, in M. Olofsdotter (ed.), Allelopathy in Rice. International Rice Research Institute, Manila.Google Scholar
  55. Kim, K. U., Shin, D. H., Kim, H. Y., Lee, Z. L., and Olofsdotter, M. 1999. Evaluation of allelopathic potential in rice germplasm. Korean J. Weed Sci. 19:1–9.Google Scholar
  56. Kim, K. W. and Kim, K. U. 2000. Searching for rice allelochemicals, pp. 83–95, in K. U. Kim and D. H. Shin (eds.), Rice Allelopathy. Kyungpook National University, Korea.Google Scholar
  57. Kobayashi, K., Shigemori, H. and Kato-Noguchi, H. 2007. Allelopathic potential of Hypnum plumaeforme L. and its allelopathic substances, pp. 77 in 4th Asia-Pacific Conference on Chemical Ecology, from Biomolecules to Ecosystems an Interactive Chemical Message for our Future, Tsukuba, Japan.Google Scholar
  58. Kodama, O., Suzuki, T., Miyakawa, J., and Akatsuka, T. 1988a. Ultraviolet-induced accumulation of phytoalexins in rice leaves. Agric. Biol. Chem. 52:2469–2473.Google Scholar
  59. Kodama, O., Yamada, A., Yamamoto, A., Takemoto, T., and Akatsuka, T. 1988b. Induction of phytoalexins with heavy metal ions in rice leaves. J. Pesticide Sci. 13:615–617.Google Scholar
  60. Kodama, O., Li, W. X., Tamogmi, S., and Akatsuka, T. 1992. Oryzalexin S, a novel stemarane-type diterpene rice phytoalexin. Biosci. Biotechnol. Biochem. 56:1002–1003.Google Scholar
  61. Kong, C., Liang, W., Xu, X., and Hu, F. 2004. Release and activity of allelochemicals from allelopthic rice seedlings. J. Agri. Food Chem. 52:2861–2865.Google Scholar
  62. Kong, C. H., Li, H. B., Hu, F., Xu, X. H., and Wang, P. 2006. Allelochemicals released by rice roots and residues in soil. Plant Soil 288:47–56.Google Scholar
  63. Kong, C. H. 2008. Rice allelopathy. Allelopathy J. 22:261–278.Google Scholar
  64. Kuwatsuka, S. and Shindo, H. 1973. Behavior of phenolic substances in the decaying process of plants. I. Identification and quantitative determination of phenolic acids in rice straw and its decayed product by gas chromatography. Soil Sci. Plant Nut. 19:219–227.Google Scholar
  65. Leather, G. R. and Einhellig, F. A. 1986. Bioassays in the study of allepathy, pp. 133–145, in A. R. Putnam and C.-S. Tang (eds.), The Science of Allelopathy. Wiley, New York.Google Scholar
  66. Leather, G. R. and Einhelling, F. A. 1988. Bioassay of naturally occurring allelochemicals for phytotoxicity. J. Chem Ecol. 14:1821–1828.Google Scholar
  67. Lee, C. W., Yoneyama, K., Takeuchi, Y., Konnai, M., Tamogami, S., and Kodama, O. 1999. Momilactones A and B in rice straw harvested at different growth stages. Biosci. Biotechnol. Biochem. 63:1318–1320.Google Scholar
  68. MacKintosh, C., Lyon, G. D., and MacKintosh, R. W. 1994. Protein phosphatase inhibitors activate anti-fungal defense responses of soybean cotyledons and cell cultures. Plant J. 5:137–147.Google Scholar
  69. Mattice, J., Lavy, T., Skulman, B., and Dilday, R. H. 1998. Searching for allelochemicals in rice that control ducksalad, pp. 81–98, in M. Olofsdotter (ed.), Allelopathy in Rice. International Rice Research Institute, Manila.Google Scholar
  70. Mennan, H., Ngouajio, M., Sahin, M., Isik, D., and Kaya, A. E. 2012. Quantification of momilactone B in rice hulls and the phytotoxic potential of rice extracts on the seed germination of Alisma plantago-aquatica. Weed Biol. Manag. 12:29–39.Google Scholar
  71. Navarez, D. and Olofsdotter, M. 1996. Relay seedling technique for screening allelopathic rice (Oryza sativa), pp. 1285-1290 in Proc. 2nd Int. Weed Control Conference, Copenhagen.Google Scholar
  72. Neimeyer, H. M. and Perez, J. M. 1995. Potential of hydroxamic acids in control of cereal pests, disease, and weeds, pp. 261–270, in K. M. M. D. Inderjit and F. A. Einhelling (eds.), Allelopathy: Organisms, Processes and Applications, American Chemical Society Symposium Series No. 582. American Chemical Society, Washington DC.Google Scholar
  73. Netzley, D. H., Reopel, J. L., Ejeta, G., and Butler, L. 1988. Germination stimulants of witchweed (Striga asiatica) from hydrophobic root exudate of Sorghum (Sorghum bicolor). Weed Sci. 36:441–446.Google Scholar
  74. Nimbal, C. I., Pederson, J. F., Yerkes, C. N., Weston, L. A., and Weller, S. C. 1996. Phytotoxicity and distribution of sorgoleone in grain sorghum germplasm. J. Agr. Food Chem. 44:1343–1347.Google Scholar
  75. Nozaki, H., Hayashi, K. I., Nishimura, N., Kawaide, H., Matsuo, A., and Takaoka, D. 2007. Momilactone A and B as allelochemicals from moss Hypnum plumaeforme: first occurrence in bryophytes. Biosci. Biotech. Biochem. 71:3127–3130.Google Scholar
  76. Okada, A., Shimizu, T., Okada, K., Kuzuyama, T., Koga, J., Shibuya, N., Nojiri, H., and Yamane, H. 2007. Elicitor induced activation of the methylerythritol phosphate pathway toward phytoalexins biosynthesis in rice. Plant Mol. Biol. 65:177–187.PubMedGoogle Scholar
  77. Olofsdotter, M., Navarez, D., Rebulanan, M., and Streibig, J. C. 1999. Weed-suppressing rice cultivars: does allelopathy play a role? Weed Res. 39:441–454.Google Scholar
  78. Olofsdotter, M., Rebulanan, M., Madrid, A., Dali, W., Navarez, D., and Olk, D. C. 2002. Why phenolic acids are unlikely primary allelochemicals in rice. J. Chem. Ecol. 28:229–242.PubMedGoogle Scholar
  79. Osbourn, A. 2010. Gene clusters for secondary metabolism pathways: an emerging theme in plant biology. Plant Physiol. 154:531–535.PubMedGoogle Scholar
  80. Otomo, K., Kenmoku, H., Oikawa, H., König, W. A., Toshima, H., Mitsuhashi, W., Yamane, H., Sassa, T., and Toyomasu, T. 2004a. Biological functions of ent- and syn-copalyl diphosphate synthases in rice: key enzymes for the branch point of gibberellin and phytoalexin biosynthesis. Plant J. 39:886–893.PubMedGoogle Scholar
  81. Otomo, K., Kanno, Y., Motegi, A., Kenmoku, H., Yamane, H., Mitsuhashi, W., Oikawa, H., Toshima, H., Itoh, H., Matsuoka, M., Sassa, T., and Toyomasu, T. 2004b. Diterpene cyclases responsible for the biosynthesis of phytoalexins, momilactones A, B, and oryzalexins A-F in rice. Biosci. Biotechnol. Biochem. 68:2001–2006.PubMedGoogle Scholar
  82. Perez, F. J. and Ormeno-Nunez, J. 1991. Difference in hydroxamic acid control in roots and root exudates of wheat (Tritium qestirum L.) and rye (Seale cereale L.): possible role in allelopathy. J. Chem. Ecol. 17:1037–1043.Google Scholar
  83. Peters, R. J. 2006. Uncovering the complex metabolic network underlying diterpenoid phytoalexin biosynthesis in rice and other cereal crop plants. Phytochemistry 67:2307–2317.PubMedGoogle Scholar
  84. Peters, R. J. 2010. Two rings in them all: the labdane-related diterpenoids. Nat. Prod. Rep. 27:1521–1530.PubMedGoogle Scholar
  85. Pheng, S., Adkins, S., Olofsdotter, M., and Jahn, G. 1999. Allelopathic effects of rice (Oryza sativa L.) on the growth of awnless barnyardgrass (Echinochloa colona (L.) Link): A new form for weed management. Cambodian J. Agri. 2:42–49.Google Scholar
  86. Putnam, A. R. and Tang, C.-S. 1986. Allelopathy: State of the science, pp. 1–19, in A. R. Putnam and C.-S. Tang (eds.), The Science of Allelopathy. Wiley, New York.Google Scholar
  87. Qasem, J. R. and Hill, T. A. 1989. On difficulties with allelopathy methodology. Weed Res. 29:345–347.Google Scholar
  88. Rakwal, R., Shii, K., Agrawaland, G. K., and Yonekura, M. 2001. Protein phosphatase inhibitors activate defense responses in rice (Oryza sativa) leaves. Physiol. Plant. 111:151–157.Google Scholar
  89. Rao, A. N., Johnson, D. E., Sivaprasad, B., Ladha, J. K., and Mortimer, A. M. 2007. Weed management in direct-seeded rice. Adv. Agron. 93:153–255.Google Scholar
  90. Rice, E. L. 1984. pp. 422, Allelopathy, 2nd ed. Academic, Orlando.Google Scholar
  91. Rimando, A. M. and Duke, S. O. 2003. Studies on rice allelochemicals, pp. 221–244, in C. W. Smith and R. H. Dilday (eds.), Rice; Origin, History, Technology and Production. Wiley, Hoboken.Google Scholar
  92. Sakamoto, T., Miura, K., Itoh, H., Tatsumi, T., Ueguchi-Tanaka, M., Ishiyama, K., Kobayshi, M., Agrawal, G. K., Takeda, S., Abe, K., Miyao, A., Hirochika, H., Kitano, H., Ashikari, M., and Matusoka, M. 2004. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol. 134:1642–1653.PubMedGoogle Scholar
  93. Schulz, M., Marocco, A., Tabaglio, T. 2013. Benzoxazinoids in rye allelopathy – From discovery to application in sustainable weed control and organic farming. J. Chem. Ecol. 39:154–174.Google Scholar
  94. Seal, A. N., Pratley, J. E., Haig, T., and An, M. 2004a. Identification and quantitation of compounds in a series of allelopathic and non-allelopathic rice root exudates. J. Chem. Ecol. 30:1647–1662.PubMedGoogle Scholar
  95. Seal, A. N., Haig, T., and Pratley, J. E. 2004b. Evaluation of putative allelochemicals in rice roots exudates for their role in the suppression of arrowhead root growth. J. Chem. Ecol. 30:1663–1678.PubMedGoogle Scholar
  96. Shimura, K., Okada, A., Okada, K., Jikumaru, Y., Ko, K.-W., Toyomasu, T., Sassa, T., Hasegawa, M., Kodama, O., Shibuya, N., Koga, J., Nojiri, H., and Yamane, H. 2007. Identification of a biosynthetic gene cluster in rice for momilactones. J. Biol. Chem. 282:34013–34018.PubMedGoogle Scholar
  97. Swaminathan, S., Morrone, D., Wang, Q., Fulton, D. B., and Peters, R. J. 2009. CYP76M7 is an ent-cassadiene C11α-hydroxylase defining a second multifunctional diterpenoid biosynthetic gene cluster in rice. Plant Cell 21:3315–3325.PubMedGoogle Scholar
  98. Takahashi, N., Kato, T., Tsunagawa, M., Sasaki, N., and Kitahara, Y. 1976. Mechanisms of dormancy in rice seeds. II. New growth inhibitors, momilactone-A and -B isolated from the hulls of rice seeds. Jap. J. Breed. 26:91–98.Google Scholar
  99. Takos, A. M. and Rook, F. 2012. Why biosynthetic genes for chemical defense compounds cluster. Trends Plant Sci. 17:383–388.PubMedGoogle Scholar
  100. Tamogami, S. and Kodama, O. 2000. Coronatine elicits phytoalexin production in rice leaves (Oryza sativa L.) in the same manner as jasmonic acid. Phytochemistry 54:689–694.PubMedGoogle Scholar
  101. Tanaka, F., Ono, S., and Hayasaka, T. 1990. Identification and evaluation of toxicity of rice root elongation inhibitors in flooded soils with added wheat straw. Soil Sci. Plant Nut. 36:97–103.Google Scholar
  102. Toyomasu, T. 2008. Recent advances regarding diterpene cyclase genes in higher plants and fungi. Biosci. Biotechnol. Biochem. 72:1168–1175.PubMedGoogle Scholar
  103. Toyomasu, T., Kagahara, T., Okada, K., Koga, J., Hasegawa, M., Mitsuhashi, W., Sassa, T., and Yamane, H. 2008. Diterpene phytoalexins are biosynthesized in and exuded from the roots of rice seedlings. Biosci. Biotechnol. Biochem. 72:562–567.PubMedGoogle Scholar
  104. VanEtten, H. D., Mansfield, J. W., Bailey, J. A., and Farmer, E. E. 1994. Two Classes of Plant Antibiotics: Phytoalexins versus “Phytoanticipans”. Plant Cell 6:1191–1192.PubMedGoogle Scholar
  105. Wang, Q., Hillwig, M. L., and Peters, R. J. 2011. CYP99A3: functional identification of a diterpene oxidase from the momilactone biosynthetic gene cluster in rice. Plant J. 65:87–95.PubMedGoogle Scholar
  106. Wardle, D. A., Nicholson, K. S., and Ahmed, M. 1992. Comparison of osmotic and allelopathic effects of grass leaf extracts on grass seed germination and radicle elongation. Plant Soil 140:315–319.Google Scholar
  107. Weidenhamer, J. D., Morton, T. C., and Romeo, J. T. 1987. Solution volume and seed number: Often overlooked factors in allelopathic bioassays. J. Chem. Ecol. 13:1481–1491.Google Scholar
  108. Weston, L., Alsaadaw, I., and Baerson, S. 2013. Sorghum allelopathy – From ecosystem to molecule. J. Chem. Ecol. 39:142–153.Google Scholar
  109. Wilderman, P. R., Xu, M., Jin, Y., Coates, R. M., and Peters, R. J. 2004. Identification of syn-pimara-7,15-diene synthase reveals functional clustering of terpene synthases involved in rice phytoalexin/allelochemical biosynthesis. Plant Physiol. 135:2098–2105.PubMedGoogle Scholar
  110. Wu, H., Haig, T., Pratley, J., Lemerle, D., and An, M. 2001. Allelochemicals in wheat (Triticum aestivum L.): Production and exudation of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one. J. Chem. Ecol. 27:1691–1700.PubMedGoogle Scholar
  111. Xu, M., Hillwig, M. L., Prisic, S., Coates, R. M., and Peters, R. J. 2004. Functional identification of rice syn-copalyl diphosphate synthase and its role in initiating biosynthesis of diterpenoid phytoalexin/allelopathic natural products. Plant J. 39:309–318.PubMedGoogle Scholar
  112. Xu, M., Galhano, R., Wiemann, P., Bueno, E., Tiernan, M., Wu, W., Chung, I.-M., Gershenzon, J., Tudzynski, B., Sesma, A., and Peters, R. J. 2012. Genetic evidence for natural product-mediated plant-plant allelopathy in rice (Oryza sativa). New Phytol. 193:570–575.PubMedGoogle Scholar
  113. Yamada, A., Shibuya, N., Kodama, O., and Akatsuka, T. 1993. Induction of phytoalexin formation in suspension-cultures rice cells by N-acetylchitooligosaccharides. Biosci. Biotechnol. Biochem. 57:405–409.Google Scholar
  114. Zhang, J., Li, C., Wu, C., Xiong, L., Chen, G., Zhang, Q., and Wang, S. 2006. RMD: a rice mutant database for functional analysis of the rice genome. Nucl. Acids Res. 34:D745–D748.PubMedGoogle Scholar
  115. Zhao, H., Li, H., Kong, C., Xu, X., and Liang, W. 2005. Chemical response of allelopathic rice seedlings under varying environmental conditions. Allelopathy J. 15:105–110.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Applied Biological Science, Faculty of AgricultureKagawa UniversityMikiJapan
  2. 2.Department of Biochemistry, Biophysics, & Molecular BiologyIowa State UniversityAmesUSA

Personalised recommendations