Journal of Chemical Ecology

, Volume 38, Issue 10, pp 1306–1317 | Cite as

Does the Stereochemistry of Methylated Cuticular Hydrocarbons Contribute to Mate Recognition in the Egg Parasitoid Wasp Ooencyrtus kuvanae?

  • Kelly Ablard
  • Regine Gries
  • Grigori Khaskin
  • Paul W. Schaefer
  • Gerhard Gries


Close-range sexual communication of the egg parasitoid wasp Ooencyrtus kuvanae (Hymenoptera: Encyrtidae) takes place on host gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae), egg masses. We tested the hypothesis that mate recognition in O. kuvanae is mediated, in part, by low-volatility cuticular hydrocarbon (CHC) pheromone components. Gas chromatographic and GC-mass spectrometric analyses of body surface extracts of male and female wasps revealed no sex-specific components, but 5-methylheptacosane (5-me-27Hy) and 5,17-dimethylheptacosane (5,17-dime-27Hy) were consistently more abundant in extracts of males. The ratio of 5-me-27Hy and 5,17-dime-27Hy was similar in extracts of males and females, and quantitative differences alone seemed insufficient to impart sex-specific CHC profiles. Therefore, we further hypothesized that the absolute configuration of 5-me-27Hy and 5,17-dime-27Hy contributes to mate recognition or attraction. As the stereoisomers of 5-me-27Hy and 5,17-dime-27Hy cannot currently be separated chromatographically, we could not determine the stereochemistry of the insect-produced components. Instead, we synthesized all stereoisomers and bioassayed synthetic blends in laboratory experiments. Of eight 2-component blends, each blend containing one of the two enantiomers of 5-me-27Hy and one of the four stereoisomers of 5,17-dime-27Hy, the blend of (5S)-methylheptacosane and (5R,17S)-dimethylheptacosane attracted males, whereas the blend of (5R)-methylheptacosane and (5R,17R)-dimethylheptacosane repelled males. Apparent recognition of both pheromone components and pheromone antagonists by males supports the hypothesis that the stereochemistry of 5-me-27Hy and 5,17-dime-27Hy, and possibly other methylated CHCs, may differ between male and female O. kuvanae, and that these differences may serve in mate attraction and recognition.


Mate recognition Stereoisomers Cuticular hydrocarbons Sex pheromone Enantiomers Pheromone antagonist Absolute configuration Stereochemistry Parasitoid 



We thank G. Andersen, M. Andersen, H. Bottomley, U. Somjee, and O. Moeri for technical assistance; E. Kiehlmann for review of the manuscript, S. DeMuth for graphical illustrations, and two anonymous reviewers for constructive comments. Funding was provided by a Natural Sciences and Engineering Research Council of Canada (NSERC) – Discovery Grant and by an NSERC – Industrial Research Chair to G. G., with Contech Enterprises, SC Johnson Canada, and Global Forest Science (GF-18-2007-226; GF-18-2007-227) as sponsors.


  1. Ablard, K., Fairhurst, S., and ersen, G., Schaefer, P., and Gries, G. 2011. Mechanisms, functions, and fitness consequences of pre- and post-copulatory rituals of the parasitoid wasp Ooencyrtus kuvanae. Entomol. Exp. Appl. 140:103–111.CrossRefGoogle Scholar
  2. Ardeh, M. J., de Jong, P. W., Loomans, A. J. M., and Van Lenteren, J. C. 2004. Inter- and intraspecific effects of volatile and nonvolatile sex pheromones on males mating behavior, and hybridization in Eretmocerus mundus and E. eremicus (Hymenoptera: Aphelinidae). J. Insect Behav 17:745–759.CrossRefGoogle Scholar
  3. Ayasse, M., Paxton, R., and Tengo, J. 2001. Mating behavior and chemical communication in the order Hymenoptera. Annu. Rev. Entomol. 46:31–78.PubMedCrossRefGoogle Scholar
  4. Borden, J. H., Chong, L., McLean, J. A., Slessor, K. N., and Mori, K. 1976. Gnathotrichus sulcatus: Synergistic response to enantiomers of aggregation pheromone sulcatol. Science 192:894–896.PubMedCrossRefGoogle Scholar
  5. Brown, M. W. 1984. Literature review of Ooencyrtus kuvanae [Hym.: Encyrtidae], an egg parasite of Lymantria dispar [Lep: Lymantriidae]. Entomophaga 29:249–265.CrossRefGoogle Scholar
  6. Burke, S. D., Cobb, J. E., and Takeuchi, K. 1985. Total synthesis of (+)-Phyllanthocin. J. Org. Chem. 50:3420–3421.CrossRefGoogle Scholar
  7. Cardé, R. T., Doane, C. C., Baker, T. C., Iwaki, S., and Marumo, S. 1977. Attractancy of optically active pheromone for male gypsy moth. Environ. Entomol. 6:768–772.Google Scholar
  8. Carlson, D., Mramba, F., Sutton, B., Bernier, U., Geden, C., and Mori, K. 2005. Sex pheromone of the tsetse species, Glossina austeni: Isolation and identification of natural hydrocarbons, and bioassay of synthesized compounds. Med. Vet. Entomol. 19:470–479.PubMedCrossRefGoogle Scholar
  9. Decker, U., Powell, W., and Clark, S. 1993. Sex pheromones in the cereal aphid parasitoids Praon volucre and Aphidius rhopalosiphi. Entomol. Exp. Appl. 69:33–39.CrossRefGoogle Scholar
  10. Delury, N., Gries, G., Gries, R., Judd, G., and Brown, J. 1999. Sex pheromone of Ascogaster quadridentata, a parasitoid of Cydia pomonella. J. Chem. Ecol. 25:2229–2245.CrossRefGoogle Scholar
  11. Duff, C., Gries, G., Mori, K., Shirai, Y., Seki, M., Takikawa, H., Sheng, T., Slessor, K., Gries, R., Maier, C., and Ferguson, D. 2001. Does pheromone biology of Lambdina athasaria and L. pellucidaria contribute to their reproductive isolation? J. Chem. Ecol. 27:431–442.PubMedCrossRefGoogle Scholar
  12. Eller, F. J., Bartelt, R. J., Jones, R. L., and Kulman, H. M. 1984. Ethyl (Z)-9-hexadecenoate a sex pheromone of Syndipnus rubiginosus, a sawfly parasitoid. J. Chem. Ecol. 10:291–300.CrossRefGoogle Scholar
  13. Fauvergue, X., Hopper, K., and Antolin, M. 1995. Mate finding via a trail sex-pheromone by a parasitoid wasp. Proc. Natl. Acad. Sci. USA 92:900–904.PubMedCrossRefGoogle Scholar
  14. Ginzel, M., Millar, J., and Hanks, L. 2003. (Z)-9-Pentacosene - contact sex pheromone of the locust borer, Megacyllene robiniae. Chemoecology 13:135–141.CrossRefGoogle Scholar
  15. Godfray, H. C. J. 1994. Parasitoids: Behavioral and Evolutionary Ecology. Princeton University Press, Princeton.Google Scholar
  16. Gries, G., Gries, R., Krannitz, S., Li, J., King, G., Slessor, K., Borden, J., Bowers, W., West, R., and Underhill, E. 1993a. Sex pheromone of the western hemlock looper, Lambdina fiscellaria lugubrosa (Hulst) (Lepidoptera: Geometridae). J. Chem. Ecol. 19:1009–1019.CrossRefGoogle Scholar
  17. Gries, G., King, G., Gries, R., Wimalaratne, P., Gray, T., Shepherd, R., Li, J., Slessor, K., and Khaskin, G. 1993b. 3,13-Dimethylheptadecane: Major sex pheromone component of the western false hemlock looper, Nepytia freemani Munroe (Lepidoptera: Geometridae). J. Chem. Ecol. 19:1501–1510.CrossRefGoogle Scholar
  18. Gries, G., Clearwater, J., Gries, R., Khaskin, G., King, S., and Schaefer, P. 1999. Synergistic sex pheromone components of white-spotted tussock moth, Orgyia thyellina. J. Chem. Ecol. 25:1091–1104.CrossRefGoogle Scholar
  19. Gries, R., Gries, G., Li, J., Maier, C., Lemmon, C., and Slessor, K. 1994. Sex pheromone components of the spring hemlock looper, Lambdina athasaria (Walker) (Lepidoptera: Geometridae). J. Chem. Ecol. 20:2501–2511.CrossRefGoogle Scholar
  20. Gries, R., Gries, G., King, G., and Maier, C. 1997. Sex pheromone components of the apple leafminer, Lyonetia prunifoliella. J. Chem. Ecol. 23:1119–1130.CrossRefGoogle Scholar
  21. Gries, R., Khaskin, G., Khaskin, E., Foltz, J., Schaefer, P., and Gries, G. 2003. Enantiomers of (Z,Z)-6,9-heneicosadien-11-ol: Sex pheromone components of Orgyia detrita. J. Chem. Ecol. 29:2201–2212.PubMedCrossRefGoogle Scholar
  22. Gries, R., Khaskin, G., Bennett, R., Miroshnychenko, A., Burden, K., and Gries, G. 2005. (S,S)-2,12-, (S,S)-2,13-, and (S,S)-2,14-Diacetoxyheptadecanes: Sex pheromone components of red cedar cone midge, Mayetiola thujae. J. Chem. Ecol. 31:2933–2946.PubMedCrossRefGoogle Scholar
  23. Gulias Gomes, C. C., Trigo, J. R., and Eiras, A. E. 2008. Sex pheromone of the american warble fly, Dermatobia hominis: The role of cuticular hydrocarbons. J. Chem. Ecol. 34:636–646.PubMedCrossRefGoogle Scholar
  24. Hofstetter, R. W. and Raffa, K. F. 1997. Effects of host diet on the orientation, development, and subsequent generations of the gypsy moth (Lepidoptera: Lymantriidae) egg parasitoid Ooencyrtus kuvanae (Hymenoptera: Encyrtidae). Environ. Entomol. 26:1276–1282.Google Scholar
  25. Howard, R. 1992. Comparative analysis of cuticular hydrocarbons from the ectoparasitoids Cephalonomia waterstoni and Laelius utilis (Hymenoptera: Bethylidae) and their respective hosts, Cryptolestes ferrugineus (Coleoptera: Cucujidae) and Trogoderma variabile (Coleoptera: Dermestidae). Ann. Entomol. Soc. Am. 85:317–325.Google Scholar
  26. Howard, R. and Liang, Y. 1993. Cuticular hydrocarbons of winged and wingless morphs of the ectoparasitoid Choetospila elegans Westwood (Hymenoptera: Pteromalidae) and its host, larval lesser grain borer (Rhyzopertha dominica) (Coleoptera: Bostrichidae). Comp. Biochem. Physiol. 106:407–414.Google Scholar
  27. Howard, R. and Blomquist, G. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50:371–393.PubMedCrossRefGoogle Scholar
  28. Jallon, J. and David, J. 1987. Variations in cuticular hydrocarbons among the 8 species of the Drosophila melanogaster subgroup. Evolution 41:294–302.CrossRefGoogle Scholar
  29. Johansson, B. G. and Jones, T. M. 2007. The role of chemical communication in mate choice. Biol. Rev. 82:265–289.PubMedCrossRefGoogle Scholar
  30. King, G. G. S., Gries, R., Gries, G., and Slessor, K. N. 1995. Optical isomers of 3,13-dimethylheptadecane: Sex pheromone components of the western false hemlock looper, Nepytia freemani (Lepidoptera: Geometridae). J. Chem. Ecol. 21:2027–2045.CrossRefGoogle Scholar
  31. Klimetzek, D., Loskant, G., Vité, J. P., and Mori, K. 1976. Disparlure: Differences in pheromone perception between gypsy moth and nun moth. Naturwissenschaften 63:581–582.CrossRefGoogle Scholar
  32. Kühbandner, S., Sperling, S., Mori, K., and Ruther, J. 2012. Deciphering the signature of cuticular lipids with contact sex pheromone function in a parasitic wasp. J. Exp. Biol. 215:2471–2478.PubMedCrossRefGoogle Scholar
  33. Leal, W. 1996. Chemical communication in scarab beetles: Reciprocal behavioral agonist-antagonist activities of chiral pheromones. Proc. Natl. Acad. Sci. USA 93:12112–12115.PubMedCrossRefGoogle Scholar
  34. Marsden, S. P. and Newton, R. 2007. Electrophile-directed diastereoselective alkylation of prochiral enediolates. J. Am. Chem. Soc. 129:12600–12601.PubMedCrossRefGoogle Scholar
  35. Marshall, J. A., Grote, J., and Audia, J. E. 1987. Acyclic stereocontrol in catalyzed intramolecular Diels-Alder cyclizations leading to octahydronaphtalenecarboxaldehydes. J. Am. Chem. Soc. 109:1186–1194.CrossRefGoogle Scholar
  36. Marukawa, K., Takikawa, H., and Mori, K. 2001. Pheromone Synthesis. Part 207. Synthesis of the enantiomers of some methyl-branched cuticular hydrocarbons of the ant, Diacamma sp. Biosci. Biotech. Biochem. 65:305–314.CrossRefGoogle Scholar
  37. Matsuyama, K. and Mori, K. 1994. Synthesis of a stereomeric mixture of 13,25-, 11,21- and 11,23-dimethylheptatriacontane, the contact sex pheromone of the tsetse fly, Glossina tachinoides. Biosci. Biotech. Biochem. 58:539–543.CrossRefGoogle Scholar
  38. McClure, M., Whistlecraft, J., and McNeil, J. N. 2007. Courtship behavior in relation to the female sex pheromone in the parasitoid Aphidius ervi (Hymenoptera: Braconidae). J. Chem. Ecol. 33:1946–1959.PubMedCrossRefGoogle Scholar
  39. Millar, J., Giblin, M., Barton, D., and Underhill, E. 1991. Chiral lepidopteran sex attractants: Blends of optically active C20 and C21 diene epoxides as sex attractants for geometrid and noctuid moths (Lepidoptera). Environ. Entomol. 20:450–457.Google Scholar
  40. Miller, J. R., Mori, K., and Roelofs, W. L. 1977. Gypsy moth field trapping and electroantennogram studies with pheromone enantiomers. J. Insect Physiol. 23:1447–1454.CrossRefGoogle Scholar
  41. Mohamed, M. and Coppel, H. 1987. Pheromonal basis of courtship behavior in 2 gypsy moth parasitoids: Brachymeria intermedia (Nees) and Brachymeria lasus (Walker) (Hymenoptera: Chalcididae). J. Chem. Ecol. 13:1099–1113.CrossRefGoogle Scholar
  42. Mori, K. and Jiang, W. 1992. Pheromone synthesis. CXXXIV. Synthesis of the four possible stereoisomers of 13,17-dimethylnonatriacontane, a kairomone for the wasp Trichogramma nubilale. Liebigs Ann. Chem. 1992:83–85.Google Scholar
  43. Mullen, S. P., Millar, J. G., Schal, C., and Shaw, K. L. 2008. Identification and characterization of cuticular hydrocarbons from a rapid species radiation of Hawaiian swordtailed crickets (Gryllidae: Trigonidiinae: Laupala). J. Chem. Ecol. 34:198–204.PubMedCrossRefGoogle Scholar
  44. Nakamura, Y. and Mori, K. 2000. Pheromone synthesis, CCIV. Synthesis of the enantiomers of anti-2,6-dimethylheptane-1,7-diol monotetrahydropyranyl ether and their conversion into the enantiomers of the sex pheromone components of the apple leafminer, Lyonetia prunifoliella. Eur. J. Org. Chem. 2000:2745–2753.CrossRefGoogle Scholar
  45. Nichols Jr, W. J., Cosse, A. A., Bartelt, R. J., and King, B. H. 2010. Methyl 6-methylsalicylate: A female-produced pheromone component of the parasitoid wasp Spalangia endius. J. Chem. Ecol. 36:1140–1147.PubMedCrossRefGoogle Scholar
  46. Oehlschlager, A. C., King, G. G. S., Pierce, H. D., Pierce, A. M., Slessor, K. N., Millar, J. G., and Borden, J. H. 1987. Chirality of macrolide pheromones of grain beetles in the genera Oryzaephilus and Cryptolestes and its implications for species specificity. J. Chem. Ecol. 13:1543–1554.CrossRefGoogle Scholar
  47. Oguma, Y., Nemoto, T., and Kuwahara, Y. 1992. A sex pheromone study of a fruit fly Drosophila virilis Sturtevant (Diptera: Drosophilidae): additive effect of cuticular alkadienes to the major sex pheromone. Appl. Entomol. Zool. 27:499–505.Google Scholar
  48. Plimmer, J., Schwalbe, C., Paszek, E., Bierl, B., Webb, R., Marumo, S., and Iwaki, S. 1977. Contrasting effectiveness of (+) and (-) enantiomers of disparlure for trapping native populations of gypsy moth (Lepidoptera: Lymantriidae) in Massachusetts. Environ. Entomol. 6:518–522.Google Scholar
  49. Pompanon, F., Deschepper, B., Mourer, Y., Fouillet, P., and Bouletreau, M. 1997. Evidence for a substrate-borne sex pheromone in the parasitoid wasp Trichogramma brassicae. J. Chem. Ecol. 23:1349–1360.CrossRefGoogle Scholar
  50. Ruther, J., Doering, M., and Steiner, S. 2011. Cuticular hydrocarbons as contact sex pheromone in the parasitoid Dibrachys cavus. Entomol. Exp. Appl. 140:59–68.CrossRefGoogle Scholar
  51. Schlamp, K., Gries, R., Khaskin, G., Brown, K., Khaskin, E., Judd, G., and Gries, G. 2005. Pheromone components from body scales of female Anarsia lineatella induce contacts by conspecific males. J. Chem. Ecol. 31:2897–2911.PubMedCrossRefGoogle Scholar
  52. Shu, S. and Jones, R. 1993. Evidence for a multicomponent sex-pheromone in Eriborus terebrans (Gravenhorst) (Hym.: Ichneumonidae), a larval parasitoid of the European corn borer. J. Chem. Ecol. 19:2563–2576.CrossRefGoogle Scholar
  53. Silk, P. J., Sweeney, J., Wu, J., Sopow, S., Mayo, P. D., and Magee, D. 2011. Contact sex pheromones identified for two species of longhorned beetles (Coleoptera: Cerambycidae) Tetropium fuscum and T. cinnamopterum in the subfamily Spondylidinae. Environ. Entomol. 40:714–726.PubMedCrossRefGoogle Scholar
  54. Singer, T. 1998. Roles of hydrocarbons in the recognition systems of insects. Am. Zool. 38:394–405.Google Scholar
  55. Somjee, U., Ablard, K., Crespi, B., Schaefer, P. W., and Gries, G. 2011. Local mate competition in the solitary parasitoid wasp Ooencyrtus kuvanae. Behav. Ecol. Sociobiol. 65:1071–1077.CrossRefGoogle Scholar
  56. Steiner, S., Hermann, N., and Ruther, J. 2006. Characterization of a female-produced courtship pheromone in the parasitoid Nasonia vitripennis. J. Chem. Ecol. 32:1687–1702.PubMedCrossRefGoogle Scholar
  57. Sullivan, B. 2002. Evidence for a sex pheromone in bark beetle parasitoid Roptrocerus xylophagorum. J. Chem. Ecol. 28:1045–1063.PubMedCrossRefGoogle Scholar
  58. Syvertsen, T., Jackson, L., Blomquist, G., and Vinson, S. 1995. Alkadienes mediating courtship in the parasitoid Cardiochiles nigriceps (Hymenoptera: Braconidae). J. Chem. Ecol. 21:1971–1989.CrossRefGoogle Scholar
  59. Szöcs, G., Tóth, M., Francke, W., Schmidt, F., Philipp, P., König, W., Mori, K., Hansson, B., and Löfstedt, C. 1993. Species discrimination in 5 species of winter-flying geometrids (Lepidoptera) based on chirality of semiochemicals and flight season. J. Chem. Ecol. 19:2721–2735.CrossRefGoogle Scholar
  60. Tadaaki, I., Kusomoto, G., and Hyama, T. 1996. Preparation of optically active alkanediol bis (arylcarboxylic acid) esters as liquid crystals for liquid crystal compositions and display devices. Patent JP 08-217728, Aug 27, 1996.Google Scholar
  61. Takahashi, S. and Sugai, T. 1982. Mating behavior of the parasitoid wasp Tetrastichus hagenowii (Hymenoptera: Eulophidae). Entomol. Gen. 7:287–293.Google Scholar
  62. Thomas, E. J. and Whitehead, J. W. F. 1989. Cytochalasan synthesis: total synthesis of cytochalasin H. J. Chem. Soc. Perkin Trans 1:507–518.Google Scholar
  63. Tóth, M., Helmchen, G., Leikauf, U., Sziraki, G., and Szöcs, G. 1989. Behavioral activity of optical isomers of 5,9-dimethylheptadecane, the sex-pheromone of Leucoptera-scitella L (Lepidoptera: Lyonetidae). J. Chem. Ecol. 15:1535–1543.CrossRefGoogle Scholar
  64. Trabalon, M., Campan, M., Clement, J., Lange, C., and Miquel, M. 1992. Cuticular hydrocarbons of Calliphora vomitoria (Diptera): Relation to age and sex. Gen. Comp. Endocrinol. 85:208–216.PubMedCrossRefGoogle Scholar
  65. van den Assem, J. 1986. Mating behaviour in parasitic wasps, pp. 137–167, in J. Waage and D. Greathead (eds.), Insect Parasitoids. Academic, London, United Kingdom.Google Scholar
  66. van den Assem, J. 1996. Mating behaviour, pp. 163–221, in M. Jervis and N. Kidd (eds.), Insect natural enemies: Practical approaches to their study and evaluation. Springer, The Netherlands.Google Scholar
  67. van den Dool, H. and Kratz, P. 1963. A generalization of retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 11:463–471.CrossRefGoogle Scholar
  68. Widemo, F. and Johansson, B. G. 2006. Male-male pheromone signalling in lekking Drosophilia. P. R. Soc. B. 273:713–717.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Kelly Ablard
    • 1
  • Regine Gries
    • 1
  • Grigori Khaskin
    • 1
  • Paul W. Schaefer
    • 2
  • Gerhard Gries
    • 1
  1. 1.Department of Biological SciencesSimon Fraser UniversityBurnabyCanada
  2. 2.Beneficial Insect Introduction Research LaboratoryU.S. Department of AgricultureNewarkUSA

Personalised recommendations