Journal of Chemical Ecology

, Volume 38, Issue 8, pp 1050–1056 | Cite as

Defensive Roles of (E)-2-Alkenals and Related Compounds in Heteroptera

  • Koji Noge
  • Kathleen L. Prudic
  • Judith X. Becerra


We examined whether shared volatiles found in various heteropteran species and developmental stages function to repel predators. The nymphal dorsal abdominal gland secretions of Riptortus pedestris (Heteroptera: Alydidae) and Thasus acutangulus (Heteroptera: Coreidae), and the metathoracic scent gland secretion of Euschistus biformis (Heteroptera: Pentatomidae) adults were identified by gas chromatography/mass spectrometry (GC/MS). (E)-2-Hexenal, 4-oxo-(E)-2-hexenal (4-OHE), and (E)-2-octenal were found in all three species and deemed likely candidates for repelling predators. In addition to (E)-2-alkenals, the adult E. biformis secreted (E)-2-hexenyl acetate, (E)-2-octenyl acetate, and four hydrocarbons. We evaluated the potential predator repellent properties of these compounds and compound blends against a generalist, cosmopolitan insect predator, the Chinese praying mantid (Mantodea: Mantidae: Tenodera aridifolia sinensis). Mantids that experienced (E)-2-hexenal, (E)-2-octenal, and (E)-2-octenyl acetate moved away from the site of interaction, while 4-OHE and (E)-2-hexenyl acetate did not affect mantid behavior. The compound blends did not have additive or synergistic repellency effects on predator behavior. Compound repellency was not related to compound volatility. Instead, the repellent effect is likely related to predator olfaction, and the affinity of each compound to receptors on the antennae. Our results also suggest the repellents might intensify the visual defensive signals of aposematism (T. acutangulus nymphs) and mimicry (R. pedestris nymphs) in heteropteran bugs.


Olfactory repellency Thasus acutangulus Euschistus biformis Riptortus pedestris Riptortus clavatus (E)-2-hexenal (E)-2-octenal (E)-2-octenyl acetate Aposematism Mimickry Soybean pest 



We thank Carl W. Schaefer (University of Connecticut), Carl A. Olson, Sarai Olivier (University of Arizona) for help with insect identification, Alexander L. Wild (University of Arizona) for photographs of the insects, and Gabriela and D. Lawrence Venable (University of Arizona) for insect-collecting assistance. We are also grateful to Neil Jacobsen and Guangxin Lin (University of Arizona) for acquiring the NMR spectra. This work was funded by a seed grant from the BIO5 institute, University of Arizona to J. X. B. The GC–MS, a PerkinElmer Turbo Mass, partly used in this study is a commonly shared instrument at Akita Prefectural University.


  1. Aldlich, J. R., Oliver, J. E., Taghizadeh, T., Ferreira, J. T. B., and Liewehr, D. 1999. Pheromones and colonization: reassessment of the milkweed bug migration model (Heteroptera: Lygaeidae: Lygaeinae). Chemoecology 9:63–71.CrossRefGoogle Scholar
  2. Aldrich, J. R. 1988. Chemical ecology of the Heteroptera. Annu. Rev. Entomol. 33:211–238.CrossRefGoogle Scholar
  3. Aldrich, J. R. and Blum, M. S. 1978. Aposematic aggregation of a bug (Hemiptera: Coreidae): The defensive display and formation of aggregations. Biotropica 10:58–61.CrossRefGoogle Scholar
  4. Aldrich, J. R., Waite, G. K., Moore, C., Payne, J. A., Lusby, W. R., and Kochansky, J. P. 1993. Male-specific volatiles from Nearctic and Australasian true bugs (Heteroptera: Coreidae and Alydidae). J. Chem. Ecol. 19:2767–2781.CrossRefGoogle Scholar
  5. Aldrich, J. R., Rosi, M. C., and Bin, F. 1995. Behavioral correlates for minor volatile compounds from stink bugs (Heteroptera: Pentatomidae). J. Chem. Ecol. 21:1907–1920.CrossRefGoogle Scholar
  6. Blum, M. S. 1961. The presence of 2-hexenal in the scent gland of the pentatomid Brochymena quadripustulata. Ann. Entomol. Soc. Am. 54:410–412.Google Scholar
  7. Borges, M. and Aldrich, J. R. 1992. Instar-specific defensive secretions of stink bugs (Heteroptera: Pentatomidae). Experientia 48:893–896.CrossRefGoogle Scholar
  8. Bowers, M. D. 1993. Aposematic caterpillars: Life-styles of the warningly colored and unpalatable, pp. 331–371, in N. E. Stamp and T. M. Casey (eds.), Caterpillars: Ecological and Evolutionary Constraints on Foraging. Chapman & Hall, New York, NY.Google Scholar
  9. Brailovsky, H., Schaefer, C. W., Barrera, E., and Packauskas, R. J. 1994. A revision of the genus Thasus (Hemiptera: Coreidae: Coreinae: Nematopodini). J. N.Y Entomol. Soc. 102:318–343.Google Scholar
  10. Chapman, R. F. 1998. The Insects. Structure and Function, 4th ed. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  11. Eisner, T. 1970. Chemical defense against predation in arthropods, pp. 157–217, in E. Sondheimer and J. B. Simeone (eds.), Chemical Ecology. Academic, New York, NY.Google Scholar
  12. Eisner, T., Eisner, M., and Siegler, M. 2005. Secret Weapons. Defenses of Insects, Spiders, Scorpions, and Other Many-Legged Creatures. Belknap Press of Harvard University Press, Cambridge.Google Scholar
  13. Gunawardena, N. E. and Bandumathie, M. K. 1993. Defensive secretion of rice bug, Leptocorisa oratorius Fabricius, (Hemiptera: Coreidae): A unique chemical combination and its toxic, repellent, and alarm properties. J. Chem. Ecol. 19:851–861.CrossRefGoogle Scholar
  14. Gunawardena, N. E. and Herath, H. M. W. K. B. 1991. Significance of medium chain n-alkanes as accompanying compounds in heteropteran defensive secretions: An investigation based on the defensive secretion of Coridius janus. J. Chem. Ecol. 17:2449–2458.CrossRefGoogle Scholar
  15. Hebets, E. A. and Papaj, D. R. 2005. Complex signal function: developing a framework of testable hypotheses. Behav. Ecol. Sociobiol. 57:197–214.CrossRefGoogle Scholar
  16. Kasai, H., Maekawa, M., Kawai, K., Hachisuka, K., Takahashi, Y., Nakamura, H., Sawa, R., Matsui, S., and Matsuda, T. 2005. 4-Oxo-2-hexenal, a mutagen formed by ω-3 fat peroxidation, causes DNA adduct formation in mouse organs. Ind. Health 43:699–701.PubMedCrossRefGoogle Scholar
  17. Kikuhara, Y. 2005. The Japanese species of the genus Riptortus (Heteroptera: Alydidae) with description of a new species. Jpn. J. Syst. Entomol. 11:229–311.Google Scholar
  18. Krall, B. K., Bartelt, R. J., Lewis, C. J., and Whiteman, D. W. 1999. Chemical defense in the stink bug Cosmopepla bimaculata. J. Chem. Ecol. 25:2477–2494.CrossRefGoogle Scholar
  19. Leal, W. S., Panizzi, A. R., and Niva, C. C. 1994. Alarm pheromone system of leaf-footed bug Leptoglossus zonatus (Heteroptera: Coreidae). J. Chem. Ecol. 20:1209–1216.CrossRefGoogle Scholar
  20. Leal, W. S., Higuchi, H., Mizutani, N., Nakamori, H., Kadosawa, T., and Ono, M. 1995. Multifunctional communication in Riptortus clavatus (Heteroptera: Alydidae): Conspecific nymphs and egg parasitoid Ooencyrtus nezarae use the same adult attractant pheromone as chemical cue. J. Chem. Ecol. 21:973–985.CrossRefGoogle Scholar
  21. Marques, F. A., Wendeler, E. P., Sales Maia, B. H. L. N., Ventura, M. U., and Arruda-Gatti, I. C. 2007. Identification of defensive compounds in metathoracic glands of adults of the stink bug Dichelops melacanthus (Hemiptera: Pentatomidae). J. Braz. Chem. Soc. 18:1242–1246.CrossRefGoogle Scholar
  22. Millar, J. G. 2005. Pheromones of true bugs. Top. Curr. Chem. 240:37–84.Google Scholar
  23. Moraes, M. C. B., Pareja, M., Laumann, R. A., and Borges, M. 2008. The chemical volatiles (semiochemicals) produced by Neotropical stink bugs (Hemiptera: Pentatomidae). Neotrop. Entomol. 37:489–505.PubMedCrossRefGoogle Scholar
  24. Moreira, J. A. and Millar, J. G. 2005. Short and simple synthesis of 4-oxo-(E)-2-hexenal and homologs: Pheromone components and defensive compounds of Hemiptera. J. Chem. Ecol. 31:965–968.PubMedCrossRefGoogle Scholar
  25. Yasunaga, T., Takai, M., Yamashita, I, Kawamura, M., and Kawasawa, T. 1993. A Field Guide to Japanese Bugs. Zenkoku Noson Kyoiku Kyokai, Tokyo. (in Japanese).Google Scholar
  26. Pasteels, J. M., Grégoire, J.-C., and Rowell-Rahier, M. 1983. The chemical ecology of defense in arthropods. Annu. Rev. Entomol. 28:263–289.CrossRefGoogle Scholar
  27. Prudic, K. L., Skemp, A. K., and Papaj, D. R. 2007. Aposematic coloration, luminance contrast, and the benefits of conspicuousness. Behav. Ecol. 18:41–46.CrossRefGoogle Scholar
  28. Prudic, K. L., Noge, K., and Becerra, J. X. 2008. Adults and nymphs do not smell the same: the different defensive compounds of the giant mesquite bug (Thasus neocalifornicus: Coreidae). J. Chem. Ecol. 34:734–741.PubMedCrossRefGoogle Scholar
  29. Rowe, C. 1999. Receiver physiology and the evolution of multicomponent signals. Anim. Behav. 58:921–931.PubMedCrossRefGoogle Scholar
  30. Ruxton, G. D., Sherratt, T. N., and Speed, M. P. 2004. Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry. Oxford University Press, Oxford.Google Scholar
  31. Sakakura, A., Kawajiri, K., Ohkubo, T., Kosugi, Y., and Ishihara, K. 2007. Widely useful DMAP-catalyzed esterification under auxiliary base- and solvent-free conditions. J. Am. Chem. Soc. 129:14775–14779.PubMedCrossRefGoogle Scholar
  32. Sas Institute Inc. 2003. JMP 5.1, Cary, NC.Google Scholar
  33. Schaefer, C. W. and Packauskas, R. J. 1997. Notes on the genus Thasus (Hemiptera: Coreidae). J. N.Y Entomol. Soc. 105:206–214.Google Scholar
  34. Todd, J. L. and Baker, T. C. 1983. Response of single antennal neurons of female cabbage loopers to behaviorally active attractants. Naturwissenschaften 80:183–186.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Koji Noge
    • 1
    • 3
  • Kathleen L. Prudic
    • 1
    • 4
  • Judith X. Becerra
    • 2
  1. 1.Department of EntomologyUniversity of ArizonaTucsonUSA
  2. 2.Department of Biosphere 2University of ArizonaTucsonUSA
  3. 3.Department of Biological ProductionAkita Prefectural UniversityAkitaJapan
  4. 4.Department of Ecology and Evolutionary BiologyYale UniversityNew HavenUSA

Personalised recommendations