Skip to main content

Advertisement

Log in

Manipulation of Chemically Mediated Interactions in Agricultural Soils to Enhance the Control of Crop Pests and to Improve Crop Yield

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

In most agro-ecosystems the organisms that feed on plant roots have an important impact on crop yield and can impose tremendous costs to farmers. Similar to aboveground pests, they rely on a broad range of chemical cues to locate their host plant. In their turn, plants have co-evolved a large arsenal of direct and indirect defense to face these attacks. For instance, insect herbivory induces the synthesis and release of specific volatile compounds in plants. These volatiles have been shown to be highly attractive to natural enemies of the herbivores, such as parasitoids, predators, or entomopathogenic nematodes. So far few of the key compounds mediating these so-called tritrophic interactions have been identified and only few genes and biochemical pathways responsible for the production of the emitted volatiles have been elucidated and described. Roots also exude chemicals that directly impact belowground herbivores by altering their behavior or development. Many of these compounds remain unknown, but the identification of, for instance, a key compound that triggers nematode egg hatching to some plant parasitic nematodes has great potential for application in crop protection. These advances in understanding the chemical emissions and their role in ecological signaling open novel ways to manipulate plant exudates in order to enhance their natural defense properties. The potential of this approach is discussed, and we identify several gaps in our knowledge and steps that need to be taken to arrive at ecologically sound strategies for belowground pest management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abou Fakhr, E. M., Hibbard, B. E., and Bjostad, L. B. 1994. Tolerance of western corn rootworm larvae (Coleoptera: Chrysomelidae) to 6-methoxy-2-benzoxazolinone, a corn semiochemical for larval host location. J. Econ. Entomol. 87:647–652.

    CAS  Google Scholar 

  • Akiyama, K., Matsuzaki, K., and Hayashi, H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827.

    Article  PubMed  CAS  Google Scholar 

  • Ali, J. G., Alborn, H. T., and Stelinski, L. L. 2010. Subterranean herbivore-induced volatiles released by citrus roots upon feeding by Diaprepes abbreviatus recruit entomopathogenic nematodes. J. Chem. Ecol. 36:361–368.

    Article  PubMed  CAS  Google Scholar 

  • Ali, J. G., Alborn, H. T., and Stelinski, L. L. 2011. Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. J. Ecol. 99:26–35.

    Article  CAS  Google Scholar 

  • Aratchige, N. S., Lesna, I., and Sabelis, M. W. 2004. Below-ground plant parts emit herbivore-induced volatiles: olfactory responses of a predatory mite to tulip bulbs infested by rust mites. Exp. Appl. Acarol. 33:21.

    Article  PubMed  CAS  Google Scholar 

  • Badri, D. V., Quintana, N., el Kassis, E. G., Kim, H. K., Choi, Y. H., Sugiyama, A., Verpoorte, R., Martinoia, E., Manter, D. K., and Vivanco, J. M. 2009. An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol. 151:2006–2017.

    Article  PubMed  CAS  Google Scholar 

  • Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., and Vivanco, J. M. 2006. The role of root exudates in rhizosphere interations with plants and other organisms. Annu. Rev. Plant Biol. 57:233–266.

    Article  PubMed  CAS  Google Scholar 

  • Bécard, G. and Piché, Y. 1989. Fungal growth-stimulation by CO2 and root exudates in vesicular-arbusular mycorrhizal symbiosis. Appl. Environ. Microbiol. 55:2320–2325.

    PubMed  Google Scholar 

  • Bernklau, E. J. and Bjostad, L. B. 1998a. Behavioral responses of first-instar western corn rootworm (Coleoptera: Chrysomelidae) to carbon dioxide in a glass bead bioassay. J. Econ. Entomol. 91:444–456.

    Google Scholar 

  • Bernklau, E. J. and Bjostad, L. B. 1998b. Reinvestigation of host location by western corn rootworm larvae (Coleoptera: Chrysomelidae): CO2 is the only volatile attractant. J. Econ. Entomol. 91:1331–1340.

    Google Scholar 

  • Bernklau, E. J. and Bjostad, L. B. 2005. Insecticide enhancement with feeding stimulants in corn for western corn rootworm larvae (Coleoptera: Chrysomelidae). J. Econ. Entomol. 98:1150–1156.

    Article  PubMed  CAS  Google Scholar 

  • Bernklau, E. J., Fromm, E. A., and Bjostad, L. B. 2004. Disruption of host location of western corn rootworm larvae (Coleoptera: Chrysomelidae) with carbon dioxide. J. Econ. Entomol. 97:330–339.

    Article  PubMed  CAS  Google Scholar 

  • Bezemer, T. M. and van Dam, N. M. 2005. Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol. Evol. 20:617–624.

    Article  PubMed  Google Scholar 

  • Bjostad, L. B. and Hibbard, B. E. 1992. 6-Methoxy-2-benzoxalinone—a semiochemical for host location by western corn-rootworm larvae. J. Chem. Ecol. 18:931–944.

    Article  CAS  Google Scholar 

  • Blossey, B. and Hunt-Joshi, T. R. 2003. Belowground herbivory by insects: Influence on plants and aboveground herbivores. Annu. Rev. Entomol. 48:521–547.

    Article  PubMed  CAS  Google Scholar 

  • Boff, M. I. C., Zoon, F. C., and Smits, P. H. 2001. Orientation of Heterorhabditis megidis to insect hosts and plant roots in a Y-tube sand olfactometer. Entomol. Exp. Appl. 98:329–337.

    Article  Google Scholar 

  • Bonkowski, M., Villenave, C., and Griffiths, B. 2009. Rhizosphere fauna: The functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321:213–233.

    Article  CAS  Google Scholar 

  • Brown, V. K. and Gange, A. C. 1990. Insect herbivory below ground. Adv. Ecol. Res. 20:1–58.

    Article  Google Scholar 

  • Callaway, R. M., Thelen, G. C., Rodriguez, A., and Holben, W. E. 2004. Soil biota and exotic plant invasion. Nature 427:731–733.

    Article  PubMed  CAS  Google Scholar 

  • Carson, J. F. and Wong, F. F. 1961. Onion flavor and odor—Volatile flavor components of onions. J. Agric. Food Chem. 9:140–143.

    Article  CAS  Google Scholar 

  • Crocoll, C., Asbach, J., Novak, J., Gershenzon, J., and Degenhardt, J. 2010. Terpene synthases of oregano (Origanum vulgare L.) and their roles in the pathway and regulation of terpene biosynthesis. Plant Mol. Biol. 73:587–603.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, R. H. C., Robinson, A. F., and Perry, R. N. 2009. Hatch and host location, pp. 139–162, in R. Perry, M. Moens, and J. Starr (eds.), Root-knot Nematodes. CABI, Wallingford.

    Chapter  Google Scholar 

  • DANNER H., SAMUDRALA D., CRISTESCU S. M., and VAN DAM N. 2012. Tracing hidden herbivores: Time-resolve non-invasive analysis of belowground volatiles by proton-transfer-reaction mass spectrometry (PTR-MS). J. Chem. Ecol., this issue.

  • de Deyn, G. B., Raaijmakers, C. E., Zoomer, H. R., Berg, M. P., de Ruiter, P. C., Verhoef, H. A., Bezmer, T. M., and van der Putten, W. H. 2003. Soil invertebrate fauna enhances grassland succession and diversity. Nature 422:711–713.

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt, J., Hiltpold, I., Köllner, T. G., Frey, M., Gierl, A., Gershenzon, J., Hibbard, B. E., Ellersieck, M. R., and Turlings, T. C. J. 2009. Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proc. Natl. Acad. Sci. USA 106:13213–13218.

    Article  PubMed  CAS  Google Scholar 

  • Dekker, T., Geier, M., and Carde, R. T. 2005. Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odours. J. Exp. Biol. 208:2963–2972.

    Article  PubMed  Google Scholar 

  • Dennijs, L. and Lock, C. A. M. 1992. Differential hatching of the potato cyst nematodes Gobodera rostochiensis and Globodera pallida in root diffusates and water of differing ionic composition. Neth. J. Plant Pathol. 98:117–128.

    Article  Google Scholar 

  • Devine, K. J. and Jones, P. W. 2001. Effects of hatching factors on potato cyst nematode hatch and in-egg mortality in soil and in vitro. Nematology 3:65–74.

    Article  Google Scholar 

  • Dicke, M. and Vet, L. E. M. 1999. Plant–carnivore interactions: evolutionary and ecological consequences for plat, herbivore and carnivore, pp. 483–520, in H. Olff, V. K. Brown, and R. H. Drent (eds.), Herbivores: Between Plants and Predators. Blackwell Science, Oxford.

    Google Scholar 

  • Dicke, M., van Poecke, R. M. P., and de Boer, J. G. 2003. Inducible indirect defence of plants: From mechanisms to ecological functions. Basic Appl. Ecol. 4:27–42.

    Article  CAS  Google Scholar 

  • Dusenbery, D. B. 1980. Responses of the nematode Caenorhabditis elegans to controlled chemical stimulation. J. Comp. Physiol. 136:327–331.

    Article  Google Scholar 

  • Dusenbery, D. B. 1987. Behavioral responses of Meloidogyne incognita to temperature and carbon dioxide. J. Nematol. 19:519–519.

    Google Scholar 

  • EFFMERT U., KALDERAS J., WARNKE R., and PIECHULLA B. 2012. Volatile mediated interactions between bacteria and fungi in the soil. J. Chem. Ecol., this issue.

  • Erb, M., Lenk, C., Degenhardt, J., and Turlings, T. C. J. 2009. The underestimated role of roots in defense against leaf attackers. Trends Plant Sci. 14:653–659.

    Article  PubMed  CAS  Google Scholar 

  • ERB M., GLAUSER G., and ROBERT C. A. M. 2012. Induced immunity against below ground insect herbivores—activation of defenses in the absence of a jasmonate burst. J. Chem. Ecol., this issue.

  • Ferry, A., Dugravot, S., Delattre, T., Christides, J. P., Auger, J., Bagneres, A. G., Poinsot, D., and Cortesero, A. M. 2007. Identification of a widespread monomolecular odor differentially attractive to several Delia radicum ground-dwelling predators in the field. J. Chem. Ecol. 33:2064–2077.

    Article  PubMed  CAS  Google Scholar 

  • Ferry, A., le Tron, S., Dugravot, S., and Cortesero, A. M. 2009. Field evaluation of the combined deterrent and attractive effects of dimethyl disulfide on Delia radicum and its natural enemies. Biol. Control. 49:219–226.

    Article  CAS  Google Scholar 

  • Gaur, H. S., Beane, J., and Perry, R. N. 2000. The influence of root diffusate, host age and water regimes on hatching of the root-knot nematode, Meloidogyne triticoryzae. Nematology 2:191–199.

    Article  Google Scholar 

  • Grewal, P. S., Ehlers, R. U., and Shapiro, D. I. 2005. in P. S. Grewal, R. U. Ehlers, and D. I. Shapiro (eds.), Nematodes as Biocontrol Agents. CABI Publishing, Wallingford.

    Chapter  Google Scholar 

  • Halkier, B. A. and Gershenzon, J. 2006. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57:303–333.

    Article  PubMed  CAS  Google Scholar 

  • Hallem, E. A., Dillman, A. R., Hong, A. V., Zhang, Y. J., Yano, J. M., Demarco, S. F., and Sternberg, P. W. 2011. A sensory code for host seeking in parasitic nematodes. Curr. Biol. 21:377–383.

    Article  PubMed  CAS  Google Scholar 

  • Hibbard, B. E., Peairs, F. B., Pilcher, S. D., Schroeder, M. E., Jewett, D. K., and Bjostad, L. B. 1995. Germinating corn extracts and 6-methoxy-2-benzoxazolinone—western corn-rootworm (Coleoptera: Chrysomelidae) larval attractants evaluated with soil insecticides. J. Econ. Entomol. 88:716–724.

    CAS  Google Scholar 

  • Hiltpold, I. and Turlings, T. C. J. 2008. Belowground chemical signalling in maize: When simplicity rhymes with efficiency. J. Chem. Ecol. 34:628–635.

    Article  PubMed  CAS  Google Scholar 

  • Hiltpold, I., Baroni, M., Toepfer, S., Kuhlmann, U., and Turlings, T. C. J. 2010a. Selection of entomopathogenic nematodes for enhanced responsiveness to a volatile root signal helps to control a major root pest. J. Exp. Biol. 213:2417–2423.

    Article  PubMed  CAS  Google Scholar 

  • Hiltpold, I., Baroni, M., Toepfer, S., Kuhlmann, U., and Turlings, T. C. J. 2010b. Selective breeding of entomopathogenic nematodes for enhanced attraction to a root signal did not reduce their establishment or persistence after field release. Plant Signal. Behav. 5:1450–1452.

    Article  PubMed  Google Scholar 

  • Hiltpold, I., Toepfer, S., Kuhlmann, U., and Turlings, T. C. J. 2010c. How maize root volatiles influence the efficacy of entomopathogenic nematodes against the western corn rootworm? Chemoecology 20:155–162.

    Article  CAS  Google Scholar 

  • Hiltpold, I., Erb, M., Robert, C. A. M., and Turlings, T. C. J. 2011. Systemic root signalling in a belowground, volatile-mediated tritrophic interaction. Plant Cell Environ. 34:1267–1275.

    Article  PubMed  CAS  Google Scholar 

  • HILTPOLD I., HIBBARD B. E., FRECKMAN D. W., and TURLINGS T. C. J. 2012. Capsules containing entomopathogenic nematodes as a Trojan horse approach to control the western corn rootworm. Plant Soil. doi:10.1007/s11104-012-1253-0.

  • Horiuchi, J., Prithiviraj, B., Bais, H. P., Kimball, B. A., and Vivanco, J. M. 2005. Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria. Planta 222:848–857.

    Article  PubMed  CAS  Google Scholar 

  • Howe, G. A. and Jander, G. 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59:41–66.

    Article  PubMed  CAS  Google Scholar 

  • Hubbard, J. E., Flores-Lara, Y., Schmitt, M., McClure, M. A., Stock, S. P., and Hawes, M. C. 2005. Increased penetration of host roots by nematodes after recovery from quiescence induced by root cap exudate. Nematology 7:321–331.

    Article  Google Scholar 

  • Huber-Sannwald, E., Pyke, D. A., and Caldwell, M. M. 1997. Perception of neighbouring plants by rhizomes and roots: morphological manifestations of a clonal plant. Can. J. Bot.-Revue Canadienne de Botanique 75:2146–2157.

    Article  Google Scholar 

  • Huhta, V. 2006. The role of soil fauna in ecosystems: A historical review. Pedobiologia 50:489–495.

    Article  Google Scholar 

  • Johnson, S. N. and Gregory, P. J. 2006. Chemically-mediated host-plant location and selection by root-feeding insects. Physiol. Entomol. 31:1–13.

    Article  CAS  Google Scholar 

  • Johnson, S. N., Gregory, P. J., Greenham, J. R., Zhang, X. X., and Murray, P. J. 2005. Attractive properties of an isoflavonoid found in white clover root nodules on the clover root weevil. J. Chem. Ecol. 31:2223–2229.

    Article  PubMed  CAS  Google Scholar 

  • JOHNSON S. N., and NIELSEN U. N. 2012. Foraging in the dark—Chemically mediated host plant location by belowground insect herbivores. J. Chem. Ecol. doi:10.1007/510886-012-0106-x.

  • Joshi, N. K., Hull, L. A., Rajotte, E. G., Krawczyk, G., and Bohnenblust, E. 2011. Evaluating sex-pheromone- and kairomone-based lures for attracting codling moth adults in mating disruption versus conventionally managed apple orchards in Pennsylvania. Pest Manag. Sci. 67:1332–1337.

    Article  PubMed  CAS  Google Scholar 

  • Kabouw, P., van der Putten, W. H., van Dam, N. M., and Biere, A. 2010. Effects of intraspecific variation in white cabbage (Brassica oleracea var. capitata) on soil organisms. Plant Soil 336:509–518.

    Article  CAS  Google Scholar 

  • Kessler, A. and Morrell, K. 2010. Plant volatile signalling: Multitrophic interactions in the headspace, pp. 95–122, in A. Herrmann (ed.), The Chemistry and Biology of Volatiles. Wiley, Chichester.

    Chapter  Google Scholar 

  • Khokon, M. A. R., Okuma, E., Rahman, T., Wesemael, W. M. L., Murata, Y., and Moens, M. 2009. Quantitative analysis of the effects of diffusates from plant roots on the hatching of Meloidogyne chitwoodi from young and senescing host plants. Biosci. Biotechnol. Biochem. 73:2345–2347.

    Article  PubMed  CAS  Google Scholar 

  • Klingler, J. 1963. Die Orientierung von Ditylenchus dipsaci in Gemessenen Kunstlichen und Biologischen CO2-Gradienten. Nematologica 9:185–199.

    Article  Google Scholar 

  • Köllner, T., Held, M., Lenk, C., Hiltpold, I., Turlings, T. C. J., Gershenzon, J., and Degenhardt, J. 2008. A maize (E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20:482–494.

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar, T., Kohlen, W., Sasse, J., Borghi, L., Schlegel, M., Bachelier, J. B., Reinhardt, D., Bours, R., Bouwmeester, H. J., and Martinoia, E. 2012. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:341–344.

    Article  PubMed  CAS  Google Scholar 

  • Kruitbos, L. M., Heritage, S., Hapca, S., and Wilson, M. J. 2010. The influence of habitat quality on the foraging strategies of the entomopathogenic nematodes Steinernema carpocapsae and Heterorhabditis megidis. Parasitology 137:303–309.

    Article  PubMed  CAS  Google Scholar 

  • Kurzt, B., Hiltpold, I., Turlings, T. C. J., Kuhlmann, U., and Toepfer, S. 2009. Comparative susceptibility of larval instars and pupae of the western corn rootworm to infection by three entomopathogenic nematodes. Biocontrol 54:255–262.

    Article  Google Scholar 

  • Lazzeri, L., Curto, G., Leoni, O., and Dallavalle, E. 2004. Effects of glucosinolates and their enzymatic hydrolysis products via myrosinase on the root-knot nematode Meloidogyne incognita (Kofoid et White). J. Agric. Food Chem. 52:6703–6707.

    Article  PubMed  CAS  Google Scholar 

  • LAZZERI L., D’AVINO L., and GIES D. 2010. Additional benefits of the efficacy in containing soilborne pest and pathogens with biofumigant plants and materials. Acta Hortic. 883:323–339.

    Google Scholar 

  • Levi-Zada, A., Ben-Yehuda, S., Dunkelblum, E., Gindin, G., Fefer, D., Protasov, A., Kuznetsowa, T., Manulis-Sasson, S., and Mendel, Z. 2011. Identification and field bioassays of the sex pheromone of the yellow-legged clearwing Synanthedon vespiformis (Lepidoptera: Sesiidae). Chemoecology 21:227–233.

    Article  CAS  Google Scholar 

  • Masamune, T., Anetai, M., Takasugi, M., and Katsui, N. 1982. Isolation of a natural hatching stimulus, glycinoeclepin-A, for the soybean cyst nematode. Nature 297:495–496.

    Article  CAS  Google Scholar 

  • Mathesius, U., Mulders, S., Gao, M. S., Teplitski, M., Caetano-Anolles, G., Rolfe, B. G., and Bauer, W. D. 2003. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc. Natl. Acad. Sci. USA 100:1444–1449.

    Article  PubMed  CAS  Google Scholar 

  • Matthiessen, J. and Kirkegaard, J. 2006. Biofumigation and enhanced biodegradation: Opportunity and challenge in soilborne pest and disease management. Crit. Rev. Plant Sci. 25:235–265.

    Article  CAS  Google Scholar 

  • McCully, M. E., Miller, C., Sprague, S. J., Huang, C. X., and Kirkegaard, J. A. 2008. Distribution of glucosinolates and sulphur-rich cells in roots of field-grown canola (Brassica napus). New Phytol. 180:193–205.

    Article  PubMed  CAS  Google Scholar 

  • MULDER J. G., DIEPENHORST P., PLIEGER P., and BRUGGEMANN-ROTGANS I. E. M.; B.V. Chemische Pharmaceutische Industrie “Luxan”, PA Elst, Netherlands, assignee. 1992. Hatching Agent for the Potato Cyst Nematode. The Netherlands.

  • Neher, D. A. 2010. Ecology of plant and free-living nematodes in natural and agricultural soil. Annu. Rev. Phytopathol. 48:371–394.

    Article  PubMed  CAS  Google Scholar 

  • Oka, Y. and Mizukubo, T. 2009. Tomato culture filtrate stimulates hatching and activity of Meloidogyne incognita juveniles. Nematology 11:51–61.

    Article  Google Scholar 

  • Oliveira, R. D. L., Dhingra, O. D., Lima, A. O., Jham, G. N., Berhow, M. A., Holloway, R. K., and Vaughn, S. F. 2011. Glucosinolate content and nematicidal activity of Brazilian wild mustard tissues against Meloidogyne incognita in tomato. Plant Soil 341:155–164.

    Article  CAS  Google Scholar 

  • Perry, R. N. and Clarke, A. J. 1981. Hatching mechanisms of nematodes. Parasitology 83:435–449.

    Article  Google Scholar 

  • Perry, R. N. and Gaur, H. S. 1996. Host plant influences on the hatching of cyst nematodes. Fundam. Appl. Nematol. 19:505–510.

    Google Scholar 

  • Pline, M. and Dusenbery, D. B. 1987. Responses of plant-parasitic nematode Meloidogyne incognita to carbon dioxide determined by video camera-computer tracking. J. Chem. Ecol. 13:873–888.

    Article  Google Scholar 

  • Potter, M. J., Davies, K., and Rathjen, A. J. 1998. Suppressive impact of glucosinolates in Brassica vegetative tissues on root lesion nematode Pratylenchus neglectus. J. Chem. Ecol. 24:67–80.

    Article  CAS  Google Scholar 

  • Potter, M. J., Vanstone, V. A., Davies, K. A., and Rathjen, A. J. 2000. Breeding to increase the concentration of 2-phenylethyl glucosinolate in the roots of Brassica napus. J. Chem. Ecol. 26:1811–1820.

    Article  CAS  Google Scholar 

  • Prot, J.-C. 1980. Migration of plant-parasitic nematodes towards plant roots. Revue de Nématologie 3:305–318.

    Google Scholar 

  • Pudasaini, M. P., Viaene, N., and Moens, M. 2008. Hatching of the root-lesion nematode, Pratylenchus penetrans, under the influence of temperature and host. Nematology 10:47–54.

    Article  Google Scholar 

  • Quiroz, A., Ortega, F., Ramirez, C. C., Wadhams, L. J., and Pinilla, K. 2005. Response of the beetle Hylastinus obscurus Marsham (Coleoptera: Scolytidae) to red clover (Trifolium pratense L.) volatiles in a laboratory olfactometer. Environ. Entomol. 34:690–695.

    Article  Google Scholar 

  • Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C., and Moenne-Loccoz, Y. 2009. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361.

    Article  CAS  Google Scholar 

  • Rasmann, S. and Agrawal, A. A. 2008. In defense of roots: A research agenda for studying plant resistance to belowground herbivory. Plant Physiol. 146:875–880.

    Article  PubMed  CAS  Google Scholar 

  • Rasmann, S. and Turlings, T. C. J. 2008. First insights into specificity of below ground tritrophic interactions. Oikos 117:362–369.

    Article  Google Scholar 

  • Rasmann, S., Köllner, T. G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J., and Turlings, T. C. J. 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737.

    Article  PubMed  CAS  Google Scholar 

  • Rasmann, S., Erwin, A. C., Halitschke, R., and Agrawal, A. A. 2011. Direct and indirect root defences of milkweed (Asclepias syriaca): trophic cascades, trade-offs and novel methods for studying subterranean herbivory. J. Ecol. 99:16–25.

    Article  CAS  Google Scholar 

  • RASMANN S., ALI J.G., HELDER J., and VAN DER PUTTEN W. H. 2012. Ecology and evolution of soil nematode chemotaxis. J. Chem. Ecol., this issue.

  • Reynolds, A. M., Dutta, T. K., Curtis, R. H. C., Powers, S. J., Gaur, H. S., and Kerry, B. R. 2011. Chemotaxis can take plant-parasitic nematodes to the source of a chemo-attractant via the shortest possible routes. J. R. Soc. Interface 8:568–577.

    Article  PubMed  Google Scholar 

  • Robert, C. A. M., Veyrat, N., Glauser, G., Marti, G., Doyen, G. R., Villard, N., Gaillard, M. D. P., Köllner, T. G., Giron, D., and Body, M. 2012. A specialist root herbivore takes advantage of defensive metabolites to locate nutritious tissues. Ecol. Lett. 15:55–64.

    Article  PubMed  Google Scholar 

  • ROBERT C. A. M., ERB M., DUPLOYER M., ZWAHLEN C., DOYEN G. R., and TURLINGS T. C. 2012b. Herbivore-induced plant volatiles mediate host selection by a root herbivore. New Phytol. 194:1061–1069

  • Rolfe, R. N., Barrett, J., and Perry, R. N. 2000. Analysis of chemosensory responses of second stage juveniles of Globodera rostochiensis using electrophysiological techniques. Nematology 2:523–533.

    Article  CAS  Google Scholar 

  • Rosenberg, K., Bertaux, J., Krome, K., Hartmann, A., Scheu, S., and Bonkowski, M. 2009. Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. ISME J. 3:675–684.

    Article  PubMed  CAS  Google Scholar 

  • Schenk, H., Driessen, R. A. J., de Gelder, R., Goubitz, K., Nieboer, H., Bruggemann-Rotgans, I. E. M., and Diepenhorst, P. 1999. Elucidation of the structure of Solanoeclepin A, a natural hatching factor of potato and tomato cyst nematodes, by single-crystal x-ray diffraction. Croat. Chem. Acta 72:593–606.

    CAS  Google Scholar 

  • Schmera, D. and Guerin, P. M. 2012. Plant volatile compounds shorten reaction time and enhance attraction of the codling moth (Cydia pomonella) to codlemone. Pest Manag.. Sci. 68:454–461.

    Article  CAS  Google Scholar 

  • Tanino, K., Takahashi, M., Tomata, Y., Tokura, H., Uehara, T., Narabu, T., and Miyashita, M. 2011. Total synthesis of solanoeclepin A. Nat. Chem. 3:484–488.

    Article  PubMed  CAS  Google Scholar 

  • Turlings, T. C. J. and Wäckers, F. 2004. Recruitment of predators and parasitoids by herbivore injured-plants, pp. 21–75, in R. T. Cardé and J. G. Millar (eds.), Advances in Insect Chemical Ecology. Cambridge University Press, Cambridge.

    Chapter  Google Scholar 

  • TURLINGS T. C. J., HILTPOLD I., and RASMANN S. 2012. The importance of root-produced volatiles as foraging cues for entomopathogenic nematodes. Plant Soil.

  • Turner, S. L., Li, N., Guda, T., Githure, J., Cardé, R. T., and Ray, A. 2011. Ultra-prolonged activation of CO2-sensing neurons disorients mosquitoes. Nature 474:87–91.

    Article  PubMed  CAS  Google Scholar 

  • Vacas, S., Alfaro, C., Primo, J., and Navarro-Llopis, V. 2011. Studies on the development of a mating disruption system to control the tomato leafminer, Tuta absoluta Povolny (Lepidoptera: Gelechiidae). Pest Manag. Sci. 67:1473–1480.

    Article  PubMed  CAS  Google Scholar 

  • Vacas, S., Vanaclocha, P., Alfaro, C., Primo, J., Verd, M. J., Urbaneja, A., and Navarro-Llopis, V. 2012. Mating disruption for the control of Aonidiella aurantii Maskell (Hemiptera: Diaspididae) may contribute to increased effectiveness of natural enemies. Pest Manag. Sci. 68:142–148.

    Article  PubMed  CAS  Google Scholar 

  • van Dam, N. M. 2009. Belowground herbivory and plant defenses. Annu. Rev. Ecol. Evol. Syst. 40:373–391.

    Article  Google Scholar 

  • van Tol, R. W. H. M., van der Sommen, A. T. C., Boff, M. I. C., van Bezooijen, J., Sabelis, M. W., and Smits, P. H. 2001. Plants protect their roots by alerting the enemies of grubs. Ecol. Lett. 4:292–294.

    Article  Google Scholar 

  • Walker, T. S., Bais, H. P., Grotewold, E., and Vivanco, J. M. 2003. Root exudation and rhizosphere biology. Plant Physiol. 132:44–51.

    Article  PubMed  CAS  Google Scholar 

  • Wardle, D. A. 2006. The influence of biotic interactions on soil biodiversity. Ecol. Lett. 9:870–886.

    Article  PubMed  Google Scholar 

  • Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setala, H., van der Putten, W. H., and Wall, D. H. 2004. Ecological linkages between aboveground and belowground biota. Science 304:1629–1633.

    Article  PubMed  CAS  Google Scholar 

  • Weissteiner, S. and Schütz, S. 2006. Are different volatile pattern infuencing host plant choice of belowground living insects. Mitt. Dtsch. Ges. Allg. Angew. Entomol. 15:51–55.

    Google Scholar 

  • Wenke, K., Kai, M., and Piechulla, B. 2010. Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506.

    Article  PubMed  CAS  Google Scholar 

  • Wesemael, W. M. L., Perry, R. N., and Moens, M. 2006. The influence of root diffusate and host age on hatching of the root-knot nematodes, Meloidogyne chitwoodi and Ma fallax. Nematology 8:895–902.

    Article  Google Scholar 

  • Wilson, M. J., Ehlers, R. U., and Glazer, I. 2012. Entomopathogenic nematode foraging strategies—is Steinernema carpocapsae really an ambush forager? Nematology in press.

  • Zhao, X. W., Schmitt, M., and Hawes, M. C. 2000. Species-dependent effects of border cell and root tip exudates on nematode behavior. Phytopathology 90:1239–1245.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the journal editors for giving us the opportunity to address the aspect of rhizosphere pest control in this special issue. Our work in this field is supported by a Swiss economic stimulus grant awarded to the National Center of Competence in Research (NCCR) Plant Survival, as well as by the postdoctoral fellowship PBNEP3-13485 from the Swiss National Science Foundation awarded to IH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Hiltpold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiltpold, I., Turlings, T.C.J. Manipulation of Chemically Mediated Interactions in Agricultural Soils to Enhance the Control of Crop Pests and to Improve Crop Yield. J Chem Ecol 38, 641–650 (2012). https://doi.org/10.1007/s10886-012-0131-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-012-0131-9

Keywords

Navigation