Advertisement

Journal of Chemical Ecology

, Volume 38, Issue 6, pp 641–650 | Cite as

Manipulation of Chemically Mediated Interactions in Agricultural Soils to Enhance the Control of Crop Pests and to Improve Crop Yield

  • Ivan Hiltpold
  • Ted C. J. Turlings
Review Article

Abstract

In most agro-ecosystems the organisms that feed on plant roots have an important impact on crop yield and can impose tremendous costs to farmers. Similar to aboveground pests, they rely on a broad range of chemical cues to locate their host plant. In their turn, plants have co-evolved a large arsenal of direct and indirect defense to face these attacks. For instance, insect herbivory induces the synthesis and release of specific volatile compounds in plants. These volatiles have been shown to be highly attractive to natural enemies of the herbivores, such as parasitoids, predators, or entomopathogenic nematodes. So far few of the key compounds mediating these so-called tritrophic interactions have been identified and only few genes and biochemical pathways responsible for the production of the emitted volatiles have been elucidated and described. Roots also exude chemicals that directly impact belowground herbivores by altering their behavior or development. Many of these compounds remain unknown, but the identification of, for instance, a key compound that triggers nematode egg hatching to some plant parasitic nematodes has great potential for application in crop protection. These advances in understanding the chemical emissions and their role in ecological signaling open novel ways to manipulate plant exudates in order to enhance their natural defense properties. The potential of this approach is discussed, and we identify several gaps in our knowledge and steps that need to be taken to arrive at ecologically sound strategies for belowground pest management.

Keywords

Rhizosphere food web Root pest control Soil signaling Root volatile Crop protection Belowground plant defense Nematode 

Notes

Acknowledgments

We thank the journal editors for giving us the opportunity to address the aspect of rhizosphere pest control in this special issue. Our work in this field is supported by a Swiss economic stimulus grant awarded to the National Center of Competence in Research (NCCR) Plant Survival, as well as by the postdoctoral fellowship PBNEP3-13485 from the Swiss National Science Foundation awarded to IH.

References

  1. Abou Fakhr, E. M., Hibbard, B. E., and Bjostad, L. B. 1994. Tolerance of western corn rootworm larvae (Coleoptera: Chrysomelidae) to 6-methoxy-2-benzoxazolinone, a corn semiochemical for larval host location. J. Econ. Entomol. 87:647–652.Google Scholar
  2. Akiyama, K., Matsuzaki, K., and Hayashi, H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827.PubMedCrossRefGoogle Scholar
  3. Ali, J. G., Alborn, H. T., and Stelinski, L. L. 2010. Subterranean herbivore-induced volatiles released by citrus roots upon feeding by Diaprepes abbreviatus recruit entomopathogenic nematodes. J. Chem. Ecol. 36:361–368.PubMedCrossRefGoogle Scholar
  4. Ali, J. G., Alborn, H. T., and Stelinski, L. L. 2011. Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. J. Ecol. 99:26–35.CrossRefGoogle Scholar
  5. Aratchige, N. S., Lesna, I., and Sabelis, M. W. 2004. Below-ground plant parts emit herbivore-induced volatiles: olfactory responses of a predatory mite to tulip bulbs infested by rust mites. Exp. Appl. Acarol. 33:21.PubMedCrossRefGoogle Scholar
  6. Badri, D. V., Quintana, N., el Kassis, E. G., Kim, H. K., Choi, Y. H., Sugiyama, A., Verpoorte, R., Martinoia, E., Manter, D. K., and Vivanco, J. M. 2009. An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol. 151:2006–2017.PubMedCrossRefGoogle Scholar
  7. Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., and Vivanco, J. M. 2006. The role of root exudates in rhizosphere interations with plants and other organisms. Annu. Rev. Plant Biol. 57:233–266.PubMedCrossRefGoogle Scholar
  8. Bécard, G. and Piché, Y. 1989. Fungal growth-stimulation by CO2 and root exudates in vesicular-arbusular mycorrhizal symbiosis. Appl. Environ. Microbiol. 55:2320–2325.PubMedGoogle Scholar
  9. Bernklau, E. J. and Bjostad, L. B. 1998a. Behavioral responses of first-instar western corn rootworm (Coleoptera: Chrysomelidae) to carbon dioxide in a glass bead bioassay. J. Econ. Entomol. 91:444–456.Google Scholar
  10. Bernklau, E. J. and Bjostad, L. B. 1998b. Reinvestigation of host location by western corn rootworm larvae (Coleoptera: Chrysomelidae): CO2 is the only volatile attractant. J. Econ. Entomol. 91:1331–1340.Google Scholar
  11. Bernklau, E. J. and Bjostad, L. B. 2005. Insecticide enhancement with feeding stimulants in corn for western corn rootworm larvae (Coleoptera: Chrysomelidae). J. Econ. Entomol. 98:1150–1156.PubMedCrossRefGoogle Scholar
  12. Bernklau, E. J., Fromm, E. A., and Bjostad, L. B. 2004. Disruption of host location of western corn rootworm larvae (Coleoptera: Chrysomelidae) with carbon dioxide. J. Econ. Entomol. 97:330–339.PubMedCrossRefGoogle Scholar
  13. Bezemer, T. M. and van Dam, N. M. 2005. Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol. Evol. 20:617–624.PubMedCrossRefGoogle Scholar
  14. Bjostad, L. B. and Hibbard, B. E. 1992. 6-Methoxy-2-benzoxalinone—a semiochemical for host location by western corn-rootworm larvae. J. Chem. Ecol. 18:931–944.CrossRefGoogle Scholar
  15. Blossey, B. and Hunt-Joshi, T. R. 2003. Belowground herbivory by insects: Influence on plants and aboveground herbivores. Annu. Rev. Entomol. 48:521–547.PubMedCrossRefGoogle Scholar
  16. Boff, M. I. C., Zoon, F. C., and Smits, P. H. 2001. Orientation of Heterorhabditis megidis to insect hosts and plant roots in a Y-tube sand olfactometer. Entomol. Exp. Appl. 98:329–337.CrossRefGoogle Scholar
  17. Bonkowski, M., Villenave, C., and Griffiths, B. 2009. Rhizosphere fauna: The functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321:213–233.CrossRefGoogle Scholar
  18. Brown, V. K. and Gange, A. C. 1990. Insect herbivory below ground. Adv. Ecol. Res. 20:1–58.CrossRefGoogle Scholar
  19. Callaway, R. M., Thelen, G. C., Rodriguez, A., and Holben, W. E. 2004. Soil biota and exotic plant invasion. Nature 427:731–733.PubMedCrossRefGoogle Scholar
  20. Carson, J. F. and Wong, F. F. 1961. Onion flavor and odor—Volatile flavor components of onions. J. Agric. Food Chem. 9:140–143.CrossRefGoogle Scholar
  21. Crocoll, C., Asbach, J., Novak, J., Gershenzon, J., and Degenhardt, J. 2010. Terpene synthases of oregano (Origanum vulgare L.) and their roles in the pathway and regulation of terpene biosynthesis. Plant Mol. Biol. 73:587–603.PubMedCrossRefGoogle Scholar
  22. Curtis, R. H. C., Robinson, A. F., and Perry, R. N. 2009. Hatch and host location, pp. 139–162, in R. Perry, M. Moens, and J. Starr (eds.), Root-knot Nematodes. CABI, Wallingford.CrossRefGoogle Scholar
  23. DANNER H., SAMUDRALA D., CRISTESCU S. M., and VAN DAM N. 2012. Tracing hidden herbivores: Time-resolve non-invasive analysis of belowground volatiles by proton-transfer-reaction mass spectrometry (PTR-MS). J. Chem. Ecol., this issue.Google Scholar
  24. de Deyn, G. B., Raaijmakers, C. E., Zoomer, H. R., Berg, M. P., de Ruiter, P. C., Verhoef, H. A., Bezmer, T. M., and van der Putten, W. H. 2003. Soil invertebrate fauna enhances grassland succession and diversity. Nature 422:711–713.PubMedCrossRefGoogle Scholar
  25. Degenhardt, J., Hiltpold, I., Köllner, T. G., Frey, M., Gierl, A., Gershenzon, J., Hibbard, B. E., Ellersieck, M. R., and Turlings, T. C. J. 2009. Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proc. Natl. Acad. Sci. USA 106:13213–13218.PubMedCrossRefGoogle Scholar
  26. Dekker, T., Geier, M., and Carde, R. T. 2005. Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odours. J. Exp. Biol. 208:2963–2972.PubMedCrossRefGoogle Scholar
  27. Dennijs, L. and Lock, C. A. M. 1992. Differential hatching of the potato cyst nematodes Gobodera rostochiensis and Globodera pallida in root diffusates and water of differing ionic composition. Neth. J. Plant Pathol. 98:117–128.CrossRefGoogle Scholar
  28. Devine, K. J. and Jones, P. W. 2001. Effects of hatching factors on potato cyst nematode hatch and in-egg mortality in soil and in vitro. Nematology 3:65–74.CrossRefGoogle Scholar
  29. Dicke, M. and Vet, L. E. M. 1999. Plant–carnivore interactions: evolutionary and ecological consequences for plat, herbivore and carnivore, pp. 483–520, in H. Olff, V. K. Brown, and R. H. Drent (eds.), Herbivores: Between Plants and Predators. Blackwell Science, Oxford.Google Scholar
  30. Dicke, M., van Poecke, R. M. P., and de Boer, J. G. 2003. Inducible indirect defence of plants: From mechanisms to ecological functions. Basic Appl. Ecol. 4:27–42.CrossRefGoogle Scholar
  31. Dusenbery, D. B. 1980. Responses of the nematode Caenorhabditis elegans to controlled chemical stimulation. J. Comp. Physiol. 136:327–331.CrossRefGoogle Scholar
  32. Dusenbery, D. B. 1987. Behavioral responses of Meloidogyne incognita to temperature and carbon dioxide. J. Nematol. 19:519–519.Google Scholar
  33. EFFMERT U., KALDERAS J., WARNKE R., and PIECHULLA B. 2012. Volatile mediated interactions between bacteria and fungi in the soil. J. Chem. Ecol., this issue.Google Scholar
  34. Erb, M., Lenk, C., Degenhardt, J., and Turlings, T. C. J. 2009. The underestimated role of roots in defense against leaf attackers. Trends Plant Sci. 14:653–659.PubMedCrossRefGoogle Scholar
  35. ERB M., GLAUSER G., and ROBERT C. A. M. 2012. Induced immunity against below ground insect herbivores—activation of defenses in the absence of a jasmonate burst. J. Chem. Ecol., this issue.Google Scholar
  36. Ferry, A., Dugravot, S., Delattre, T., Christides, J. P., Auger, J., Bagneres, A. G., Poinsot, D., and Cortesero, A. M. 2007. Identification of a widespread monomolecular odor differentially attractive to several Delia radicum ground-dwelling predators in the field. J. Chem. Ecol. 33:2064–2077.PubMedCrossRefGoogle Scholar
  37. Ferry, A., le Tron, S., Dugravot, S., and Cortesero, A. M. 2009. Field evaluation of the combined deterrent and attractive effects of dimethyl disulfide on Delia radicum and its natural enemies. Biol. Control. 49:219–226.CrossRefGoogle Scholar
  38. Gaur, H. S., Beane, J., and Perry, R. N. 2000. The influence of root diffusate, host age and water regimes on hatching of the root-knot nematode, Meloidogyne triticoryzae. Nematology 2:191–199.CrossRefGoogle Scholar
  39. Grewal, P. S., Ehlers, R. U., and Shapiro, D. I. 2005. in P. S. Grewal, R. U. Ehlers, and D. I. Shapiro (eds.), Nematodes as Biocontrol Agents. CABI Publishing, Wallingford.CrossRefGoogle Scholar
  40. Halkier, B. A. and Gershenzon, J. 2006. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57:303–333.PubMedCrossRefGoogle Scholar
  41. Hallem, E. A., Dillman, A. R., Hong, A. V., Zhang, Y. J., Yano, J. M., Demarco, S. F., and Sternberg, P. W. 2011. A sensory code for host seeking in parasitic nematodes. Curr. Biol. 21:377–383.PubMedCrossRefGoogle Scholar
  42. Hibbard, B. E., Peairs, F. B., Pilcher, S. D., Schroeder, M. E., Jewett, D. K., and Bjostad, L. B. 1995. Germinating corn extracts and 6-methoxy-2-benzoxazolinone—western corn-rootworm (Coleoptera: Chrysomelidae) larval attractants evaluated with soil insecticides. J. Econ. Entomol. 88:716–724.Google Scholar
  43. Hiltpold, I. and Turlings, T. C. J. 2008. Belowground chemical signalling in maize: When simplicity rhymes with efficiency. J. Chem. Ecol. 34:628–635.PubMedCrossRefGoogle Scholar
  44. Hiltpold, I., Baroni, M., Toepfer, S., Kuhlmann, U., and Turlings, T. C. J. 2010a. Selection of entomopathogenic nematodes for enhanced responsiveness to a volatile root signal helps to control a major root pest. J. Exp. Biol. 213:2417–2423.PubMedCrossRefGoogle Scholar
  45. Hiltpold, I., Baroni, M., Toepfer, S., Kuhlmann, U., and Turlings, T. C. J. 2010b. Selective breeding of entomopathogenic nematodes for enhanced attraction to a root signal did not reduce their establishment or persistence after field release. Plant Signal. Behav. 5:1450–1452.PubMedCrossRefGoogle Scholar
  46. Hiltpold, I., Toepfer, S., Kuhlmann, U., and Turlings, T. C. J. 2010c. How maize root volatiles influence the efficacy of entomopathogenic nematodes against the western corn rootworm? Chemoecology 20:155–162.CrossRefGoogle Scholar
  47. Hiltpold, I., Erb, M., Robert, C. A. M., and Turlings, T. C. J. 2011. Systemic root signalling in a belowground, volatile-mediated tritrophic interaction. Plant Cell Environ. 34:1267–1275.PubMedCrossRefGoogle Scholar
  48. HILTPOLD I., HIBBARD B. E., FRECKMAN D. W., and TURLINGS T. C. J. 2012. Capsules containing entomopathogenic nematodes as a Trojan horse approach to control the western corn rootworm. Plant Soil. doi: 10.1007/s11104-012-1253-0.
  49. Horiuchi, J., Prithiviraj, B., Bais, H. P., Kimball, B. A., and Vivanco, J. M. 2005. Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria. Planta 222:848–857.PubMedCrossRefGoogle Scholar
  50. Howe, G. A. and Jander, G. 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59:41–66.PubMedCrossRefGoogle Scholar
  51. Hubbard, J. E., Flores-Lara, Y., Schmitt, M., McClure, M. A., Stock, S. P., and Hawes, M. C. 2005. Increased penetration of host roots by nematodes after recovery from quiescence induced by root cap exudate. Nematology 7:321–331.CrossRefGoogle Scholar
  52. Huber-Sannwald, E., Pyke, D. A., and Caldwell, M. M. 1997. Perception of neighbouring plants by rhizomes and roots: morphological manifestations of a clonal plant. Can. J. Bot.-Revue Canadienne de Botanique 75:2146–2157.CrossRefGoogle Scholar
  53. Huhta, V. 2006. The role of soil fauna in ecosystems: A historical review. Pedobiologia 50:489–495.CrossRefGoogle Scholar
  54. Johnson, S. N. and Gregory, P. J. 2006. Chemically-mediated host-plant location and selection by root-feeding insects. Physiol. Entomol. 31:1–13.CrossRefGoogle Scholar
  55. Johnson, S. N., Gregory, P. J., Greenham, J. R., Zhang, X. X., and Murray, P. J. 2005. Attractive properties of an isoflavonoid found in white clover root nodules on the clover root weevil. J. Chem. Ecol. 31:2223–2229.PubMedCrossRefGoogle Scholar
  56. JOHNSON S. N., and NIELSEN U. N. 2012. Foraging in the dark—Chemically mediated host plant location by belowground insect herbivores. J. Chem. Ecol. doi: 10.1007/510886-012-0106-x.
  57. Joshi, N. K., Hull, L. A., Rajotte, E. G., Krawczyk, G., and Bohnenblust, E. 2011. Evaluating sex-pheromone- and kairomone-based lures for attracting codling moth adults in mating disruption versus conventionally managed apple orchards in Pennsylvania. Pest Manag. Sci. 67:1332–1337.PubMedCrossRefGoogle Scholar
  58. Kabouw, P., van der Putten, W. H., van Dam, N. M., and Biere, A. 2010. Effects of intraspecific variation in white cabbage (Brassica oleracea var. capitata) on soil organisms. Plant Soil 336:509–518.CrossRefGoogle Scholar
  59. Kessler, A. and Morrell, K. 2010. Plant volatile signalling: Multitrophic interactions in the headspace, pp. 95–122, in A. Herrmann (ed.), The Chemistry and Biology of Volatiles. Wiley, Chichester.CrossRefGoogle Scholar
  60. Khokon, M. A. R., Okuma, E., Rahman, T., Wesemael, W. M. L., Murata, Y., and Moens, M. 2009. Quantitative analysis of the effects of diffusates from plant roots on the hatching of Meloidogyne chitwoodi from young and senescing host plants. Biosci. Biotechnol. Biochem. 73:2345–2347.PubMedCrossRefGoogle Scholar
  61. Klingler, J. 1963. Die Orientierung von Ditylenchus dipsaci in Gemessenen Kunstlichen und Biologischen CO2-Gradienten. Nematologica 9:185–199.CrossRefGoogle Scholar
  62. Köllner, T., Held, M., Lenk, C., Hiltpold, I., Turlings, T. C. J., Gershenzon, J., and Degenhardt, J. 2008. A maize (E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20:482–494.PubMedCrossRefGoogle Scholar
  63. Kretzschmar, T., Kohlen, W., Sasse, J., Borghi, L., Schlegel, M., Bachelier, J. B., Reinhardt, D., Bours, R., Bouwmeester, H. J., and Martinoia, E. 2012. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:341–344.PubMedCrossRefGoogle Scholar
  64. Kruitbos, L. M., Heritage, S., Hapca, S., and Wilson, M. J. 2010. The influence of habitat quality on the foraging strategies of the entomopathogenic nematodes Steinernema carpocapsae and Heterorhabditis megidis. Parasitology 137:303–309.PubMedCrossRefGoogle Scholar
  65. Kurzt, B., Hiltpold, I., Turlings, T. C. J., Kuhlmann, U., and Toepfer, S. 2009. Comparative susceptibility of larval instars and pupae of the western corn rootworm to infection by three entomopathogenic nematodes. Biocontrol 54:255–262.CrossRefGoogle Scholar
  66. Lazzeri, L., Curto, G., Leoni, O., and Dallavalle, E. 2004. Effects of glucosinolates and their enzymatic hydrolysis products via myrosinase on the root-knot nematode Meloidogyne incognita (Kofoid et White). J. Agric. Food Chem. 52:6703–6707.PubMedCrossRefGoogle Scholar
  67. LAZZERI L., D’AVINO L., and GIES D. 2010. Additional benefits of the efficacy in containing soilborne pest and pathogens with biofumigant plants and materials. Acta Hortic. 883:323–339.Google Scholar
  68. Levi-Zada, A., Ben-Yehuda, S., Dunkelblum, E., Gindin, G., Fefer, D., Protasov, A., Kuznetsowa, T., Manulis-Sasson, S., and Mendel, Z. 2011. Identification and field bioassays of the sex pheromone of the yellow-legged clearwing Synanthedon vespiformis (Lepidoptera: Sesiidae). Chemoecology 21:227–233.CrossRefGoogle Scholar
  69. Masamune, T., Anetai, M., Takasugi, M., and Katsui, N. 1982. Isolation of a natural hatching stimulus, glycinoeclepin-A, for the soybean cyst nematode. Nature 297:495–496.CrossRefGoogle Scholar
  70. Mathesius, U., Mulders, S., Gao, M. S., Teplitski, M., Caetano-Anolles, G., Rolfe, B. G., and Bauer, W. D. 2003. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc. Natl. Acad. Sci. USA 100:1444–1449.PubMedCrossRefGoogle Scholar
  71. Matthiessen, J. and Kirkegaard, J. 2006. Biofumigation and enhanced biodegradation: Opportunity and challenge in soilborne pest and disease management. Crit. Rev. Plant Sci. 25:235–265.CrossRefGoogle Scholar
  72. McCully, M. E., Miller, C., Sprague, S. J., Huang, C. X., and Kirkegaard, J. A. 2008. Distribution of glucosinolates and sulphur-rich cells in roots of field-grown canola (Brassica napus). New Phytol. 180:193–205.PubMedCrossRefGoogle Scholar
  73. MULDER J. G., DIEPENHORST P., PLIEGER P., and BRUGGEMANN-ROTGANS I. E. M.; B.V. Chemische Pharmaceutische Industrie “Luxan”, PA Elst, Netherlands, assignee. 1992. Hatching Agent for the Potato Cyst Nematode. The Netherlands.Google Scholar
  74. Neher, D. A. 2010. Ecology of plant and free-living nematodes in natural and agricultural soil. Annu. Rev. Phytopathol. 48:371–394.PubMedCrossRefGoogle Scholar
  75. Oka, Y. and Mizukubo, T. 2009. Tomato culture filtrate stimulates hatching and activity of Meloidogyne incognita juveniles. Nematology 11:51–61.CrossRefGoogle Scholar
  76. Oliveira, R. D. L., Dhingra, O. D., Lima, A. O., Jham, G. N., Berhow, M. A., Holloway, R. K., and Vaughn, S. F. 2011. Glucosinolate content and nematicidal activity of Brazilian wild mustard tissues against Meloidogyne incognita in tomato. Plant Soil 341:155–164.CrossRefGoogle Scholar
  77. Perry, R. N. and Clarke, A. J. 1981. Hatching mechanisms of nematodes. Parasitology 83:435–449.CrossRefGoogle Scholar
  78. Perry, R. N. and Gaur, H. S. 1996. Host plant influences on the hatching of cyst nematodes. Fundam. Appl. Nematol. 19:505–510.Google Scholar
  79. Pline, M. and Dusenbery, D. B. 1987. Responses of plant-parasitic nematode Meloidogyne incognita to carbon dioxide determined by video camera-computer tracking. J. Chem. Ecol. 13:873–888.CrossRefGoogle Scholar
  80. Potter, M. J., Davies, K., and Rathjen, A. J. 1998. Suppressive impact of glucosinolates in Brassica vegetative tissues on root lesion nematode Pratylenchus neglectus. J. Chem. Ecol. 24:67–80.CrossRefGoogle Scholar
  81. Potter, M. J., Vanstone, V. A., Davies, K. A., and Rathjen, A. J. 2000. Breeding to increase the concentration of 2-phenylethyl glucosinolate in the roots of Brassica napus. J. Chem. Ecol. 26:1811–1820.CrossRefGoogle Scholar
  82. Prot, J.-C. 1980. Migration of plant-parasitic nematodes towards plant roots. Revue de Nématologie 3:305–318.Google Scholar
  83. Pudasaini, M. P., Viaene, N., and Moens, M. 2008. Hatching of the root-lesion nematode, Pratylenchus penetrans, under the influence of temperature and host. Nematology 10:47–54.CrossRefGoogle Scholar
  84. Quiroz, A., Ortega, F., Ramirez, C. C., Wadhams, L. J., and Pinilla, K. 2005. Response of the beetle Hylastinus obscurus Marsham (Coleoptera: Scolytidae) to red clover (Trifolium pratense L.) volatiles in a laboratory olfactometer. Environ. Entomol. 34:690–695.CrossRefGoogle Scholar
  85. Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C., and Moenne-Loccoz, Y. 2009. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361.CrossRefGoogle Scholar
  86. Rasmann, S. and Agrawal, A. A. 2008. In defense of roots: A research agenda for studying plant resistance to belowground herbivory. Plant Physiol. 146:875–880.PubMedCrossRefGoogle Scholar
  87. Rasmann, S. and Turlings, T. C. J. 2008. First insights into specificity of below ground tritrophic interactions. Oikos 117:362–369.CrossRefGoogle Scholar
  88. Rasmann, S., Köllner, T. G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J., and Turlings, T. C. J. 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737.PubMedCrossRefGoogle Scholar
  89. Rasmann, S., Erwin, A. C., Halitschke, R., and Agrawal, A. A. 2011. Direct and indirect root defences of milkweed (Asclepias syriaca): trophic cascades, trade-offs and novel methods for studying subterranean herbivory. J. Ecol. 99:16–25.CrossRefGoogle Scholar
  90. RASMANN S., ALI J.G., HELDER J., and VAN DER PUTTEN W. H. 2012. Ecology and evolution of soil nematode chemotaxis. J. Chem. Ecol., this issue.Google Scholar
  91. Reynolds, A. M., Dutta, T. K., Curtis, R. H. C., Powers, S. J., Gaur, H. S., and Kerry, B. R. 2011. Chemotaxis can take plant-parasitic nematodes to the source of a chemo-attractant via the shortest possible routes. J. R. Soc. Interface 8:568–577.PubMedCrossRefGoogle Scholar
  92. Robert, C. A. M., Veyrat, N., Glauser, G., Marti, G., Doyen, G. R., Villard, N., Gaillard, M. D. P., Köllner, T. G., Giron, D., and Body, M. 2012. A specialist root herbivore takes advantage of defensive metabolites to locate nutritious tissues. Ecol. Lett. 15:55–64.PubMedCrossRefGoogle Scholar
  93. ROBERT C. A. M., ERB M., DUPLOYER M., ZWAHLEN C., DOYEN G. R., and TURLINGS T. C. 2012b. Herbivore-induced plant volatiles mediate host selection by a root herbivore. New Phytol. 194:1061–1069Google Scholar
  94. Rolfe, R. N., Barrett, J., and Perry, R. N. 2000. Analysis of chemosensory responses of second stage juveniles of Globodera rostochiensis using electrophysiological techniques. Nematology 2:523–533.CrossRefGoogle Scholar
  95. Rosenberg, K., Bertaux, J., Krome, K., Hartmann, A., Scheu, S., and Bonkowski, M. 2009. Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. ISME J. 3:675–684.PubMedCrossRefGoogle Scholar
  96. Schenk, H., Driessen, R. A. J., de Gelder, R., Goubitz, K., Nieboer, H., Bruggemann-Rotgans, I. E. M., and Diepenhorst, P. 1999. Elucidation of the structure of Solanoeclepin A, a natural hatching factor of potato and tomato cyst nematodes, by single-crystal x-ray diffraction. Croat. Chem. Acta 72:593–606.Google Scholar
  97. Schmera, D. and Guerin, P. M. 2012. Plant volatile compounds shorten reaction time and enhance attraction of the codling moth (Cydia pomonella) to codlemone. Pest Manag.. Sci. 68:454–461.CrossRefGoogle Scholar
  98. Tanino, K., Takahashi, M., Tomata, Y., Tokura, H., Uehara, T., Narabu, T., and Miyashita, M. 2011. Total synthesis of solanoeclepin A. Nat. Chem. 3:484–488.PubMedCrossRefGoogle Scholar
  99. Turlings, T. C. J. and Wäckers, F. 2004. Recruitment of predators and parasitoids by herbivore injured-plants, pp. 21–75, in R. T. Cardé and J. G. Millar (eds.), Advances in Insect Chemical Ecology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  100. TURLINGS T. C. J., HILTPOLD I., and RASMANN S. 2012. The importance of root-produced volatiles as foraging cues for entomopathogenic nematodes. Plant Soil. Google Scholar
  101. Turner, S. L., Li, N., Guda, T., Githure, J., Cardé, R. T., and Ray, A. 2011. Ultra-prolonged activation of CO2-sensing neurons disorients mosquitoes. Nature 474:87–91.PubMedCrossRefGoogle Scholar
  102. Vacas, S., Alfaro, C., Primo, J., and Navarro-Llopis, V. 2011. Studies on the development of a mating disruption system to control the tomato leafminer, Tuta absoluta Povolny (Lepidoptera: Gelechiidae). Pest Manag. Sci. 67:1473–1480.PubMedCrossRefGoogle Scholar
  103. Vacas, S., Vanaclocha, P., Alfaro, C., Primo, J., Verd, M. J., Urbaneja, A., and Navarro-Llopis, V. 2012. Mating disruption for the control of Aonidiella aurantii Maskell (Hemiptera: Diaspididae) may contribute to increased effectiveness of natural enemies. Pest Manag. Sci. 68:142–148.PubMedCrossRefGoogle Scholar
  104. van Dam, N. M. 2009. Belowground herbivory and plant defenses. Annu. Rev. Ecol. Evol. Syst. 40:373–391.CrossRefGoogle Scholar
  105. van Tol, R. W. H. M., van der Sommen, A. T. C., Boff, M. I. C., van Bezooijen, J., Sabelis, M. W., and Smits, P. H. 2001. Plants protect their roots by alerting the enemies of grubs. Ecol. Lett. 4:292–294.CrossRefGoogle Scholar
  106. Walker, T. S., Bais, H. P., Grotewold, E., and Vivanco, J. M. 2003. Root exudation and rhizosphere biology. Plant Physiol. 132:44–51.PubMedCrossRefGoogle Scholar
  107. Wardle, D. A. 2006. The influence of biotic interactions on soil biodiversity. Ecol. Lett. 9:870–886.PubMedCrossRefGoogle Scholar
  108. Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setala, H., van der Putten, W. H., and Wall, D. H. 2004. Ecological linkages between aboveground and belowground biota. Science 304:1629–1633.PubMedCrossRefGoogle Scholar
  109. Weissteiner, S. and Schütz, S. 2006. Are different volatile pattern infuencing host plant choice of belowground living insects. Mitt. Dtsch. Ges. Allg. Angew. Entomol. 15:51–55.Google Scholar
  110. Wenke, K., Kai, M., and Piechulla, B. 2010. Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506.PubMedCrossRefGoogle Scholar
  111. Wesemael, W. M. L., Perry, R. N., and Moens, M. 2006. The influence of root diffusate and host age on hatching of the root-knot nematodes, Meloidogyne chitwoodi and Ma fallax. Nematology 8:895–902.CrossRefGoogle Scholar
  112. Wilson, M. J., Ehlers, R. U., and Glazer, I. 2012. Entomopathogenic nematode foraging strategies—is Steinernema carpocapsae really an ambush forager? Nematology in press.Google Scholar
  113. Zhao, X. W., Schmitt, M., and Hawes, M. C. 2000. Species-dependent effects of border cell and root tip exudates on nematode behavior. Phytopathology 90:1239–1245.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.FARCE LaboratoryUniversity of NeuchâtelNeuchâtelSwitzerland
  2. 2.University of MissouriColumbiaUSA

Personalised recommendations