Journal of Chemical Ecology

, Volume 38, Issue 5, pp 463–475 | Cite as

Spatial Variability in Secondary Metabolites of the Indo-Pacific Sponge Stylissa massa

  • Sven Rohde
  • Deborah J. Gochfeld
  • Sridevi Ankisetty
  • Bharathi Avula
  • Peter J. Schupp
  • Marc Slattery


Chemical diversity represents a measure of selective pressures acting on genotypic variability. In order to understand patterns of chemical ecology and biodiversity in the environment, it is necessary to enhance our knowledge of chemical diversity within and among species. Many sponges produce variable levels of secondary metabolites in response to diverse biotic and abiotic environmental factors. This study evaluated intra-specific variability in secondary metabolites in the common Indo-Pacific sponge Stylissa massa over various geographic scales, from local to ocean basin. Several major metabolites were quantified in extracts from sponges collected in American Samoa, Pohnpei, Saipan, and at several sites and depths in Guam. Concentrations of several of these metabolites varied geographically across the Pacific basin, with American Samoa and Pohnpei exhibiting the greatest differences, and Guam and Saipan more similar to each other. There were also significant differences in concentrations among different sites and depths within Guam. The crude extract of S. massa exhibited feeding deterrence against the omnivorous pufferfish Canthigaster solandri at natural concentrations, however, none of the isolated compounds was deterrent at the maximum natural concentrations observed, nor were mixtures of these compounds, thus emphasizing the need for bioassay-guided isolation to characterize specific chemical defenses. Antibacterial activity against a panel of ecologically relevant pathogens was minimal. Depth transplants, predator exclusion, and UV protection experiments were performed, but although temporal variability in compound concentrations was observed, there was no evidence that secondary metabolite concentration in S. massa was induced by any of these factors. Although the reasons behind the variability observed in the chemical constituents of S. massa are still in question, all sponges are not created equal from a chemical standpoint, and these studies provide further insights into patterns of chemical diversity within S. massa.


Porifera Chemical defense Geographic variability Stylissa Antimicrobial activity 



We thank Katerina Pappas, Mallory de Johnson, Sylvester Lee, and Dr. Haidy Kamel for their help in the laboratory. Funding was provided by a NOAA/NIUST grant #NA16RU1496 to MS and by NIH MBRS SCORE grant S06-GM-44796 to PJS. SR was supported by a fellowship within the Postdoc-Program of the German Academic Exchange Service (DAAD). Field support was provided by the University of Guam Marine Laboratory, American Samoa Department of Marine and Wildlife Resources, Saipan Division of Coastal Resources Management, and Pohnpei Department of Marine Development. Samples were collected under permits from the Guam Department of Agriculture, American Samoa Department of Marine and Wildlife Resources, Commonwealth of the Northern Mariana Islands Division of Fish and Wildlife, and Pohnpei Department of Marine Development.


  1. Abdo, D. A., Motti, C. A., Battershill, C. N., and Harvey, E. S. 2007. Temperature and spatiotemporal variability of salicylihalamide A in the sponge Haliclona sp. J. Chem. Ecol. 33:1635–1645.PubMedCrossRefGoogle Scholar
  2. Amesbury, S. S. and Myers, R. F. 1982. pp. 1–141, Guide to the Coastal Resources of Guam Vol. 1. University of Guam Marine Lab Contribution No. 173, Mangilao.Google Scholar
  3. Assmann, M., Lichte, E., Pawlik, J. R., and Köck, M. 2000. Chemical defenses of the Caribbean sponges Agelas wiedenmayeri and Agelas conifera. Mar. Ecol. Prog. Ser. 207:255–262.CrossRefGoogle Scholar
  4. Bandaranayake, W. M., Bemis, J. E., and Bourne, D. J. 1996. Ultraviolet absorbing pigments from the marine sponge Dysidea herbacea: Isolation and structure of a new mycosporine. Comp. Biochem. Physiol., C: Toxicol. Pharmacol. 115:281–286.Google Scholar
  5. Bandaranayake, W. M., Bourne, D. J., and Sim, R. G. 1997. Chemical composition during maturing and spawning of the sponge Dysidea herbacea (Porifera: Demospongiae). Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 118:851–859.CrossRefGoogle Scholar
  6. Becerro, M. A. and Paul, V. J. 2004. Effects of depth and light on secondary metabolites and cyanobacterial symbionts of the sponge Dysidea granulosa. Mar. Ecol. Prog. Ser. 280:115–128.CrossRefGoogle Scholar
  7. Becerro, M. A., Thacker, R. W., Turon, X., Uriz, M. J., and Paul, V. J. 2003. Biogeography of sponge chemical ecology: Comparisons of tropical and temperate defenses. Oecologia 135:91–101.PubMedGoogle Scholar
  8. Betancourt-Lozano, M., Gonzalez-Farias, F., Gonzalez-Acosta, B., Garcia-Gasca, A., and Bastida-Zavala, J. R. 1998. Variation of antimicrobial activity of the sponge Aplysina fistularis (Pallas, 1766) and its relation to associated fauna. J. Exp. Mar. Biol. Ecol. 223:1–18.CrossRefGoogle Scholar
  9. Blunt, J. W. and Munro, M. H. G. 2009. MarinLit. Marine Chemistry Group, Christchurch.Google Scholar
  10. Chanas, B., Pawlik, J. R., Lindel, T., and Fenical, W. 1996. Chemical defense of the Caribbean sponge Agelas clathrodes (Schmidt). J. Exp. Mar. Biol. Ecol. 208:185–196.CrossRefGoogle Scholar
  11. Connolly, S. R. and Roughgarden, J. 1999. Theory of marine communities: Competition, predation, and recruitment-dependent interaction strength. Ecol. Monogr. 69:277–296.CrossRefGoogle Scholar
  12. Cronin, G. and Hay, M. E. 1996a. Induction of seaweed chemical defenses by amphipod grazing. Ecology 77:2287–2301.CrossRefGoogle Scholar
  13. Cronin, G. and Hay, M. E. 1996b. Susceptibility to herbivores depends on recent history of both the plant and animal. Ecology 77:1531–1543.CrossRefGoogle Scholar
  14. Dunlap, W. C. and Shick, J. M. 1998. Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: A biochemical and environmental perspective. J. Phycol. 34:418–430.CrossRefGoogle Scholar
  15. Ebel, R., Brenzinger, M., Kinze, A., Gross, H. J., and Proksch, P. 1997. Wound activation of protoxins in marine sponge Aplysina aerophoba. J. Chem. Ecol. 23:1451–1462.CrossRefGoogle Scholar
  16. Fahey, S. J. and Garson, M. J. 2002. Geographic variation of natural products of tropical nudibranch Asteronotus cespitosus. J. Chem. Ecol. 28:1773–1785.PubMedCrossRefGoogle Scholar
  17. Fielman, K. T. and Targett, N. M. 1995. Variation of 2,3,4-tribromopyrrole and its sodium sulfamate salt in the hemichordate Saccoglossus kowalevskii. Mar. Ecol. Prog. Ser. 116:125–136.CrossRefGoogle Scholar
  18. Gochfeld, D. J. and Aeby, G. S. 2008. Antibacterial chemical defenses in Hawaiian corals provide possible protection from disease. Mar. Ecol. Prog. Ser. 362:119–128.CrossRefGoogle Scholar
  19. Gochfeld, D. J., Olson, J. B., and Slattery, M. 2006. Colony versus population variation in susceptibility and resistance to dark spot syndrome in the Caribbean coral Siderastrea siderea. Dis. Aquat. Org. 69:53–65.PubMedCrossRefGoogle Scholar
  20. Gochfeld D., Kamel H., Olson J., and Thacker R. 2012, this issue. Trade-offs in defensive metabolite production but not ecological function in healthy and diseased sponges. J. Chem. Ecol. doi: 10.1007/s10886-012-0099-5
  21. Gröniger, A., Sinha, R. P., Klisch, M., and Hader, D. P. 2000. Photoprotective compounds in cyanobacteria, phytoplankton and macroalgae—a database. J. Photochem. Photobiol. B: Biol. 58:115–122.CrossRefGoogle Scholar
  22. Haber, M., Carbone, M., Mollo, E., Gavagnin, M., and Ilan, M. 2011. Chemical defense against predators and bacterial fouling in the Mediterranean sponges Axinella polypoides and A. verrucosa. Mar. Ecol. Prog. Ser. 422:113–122.CrossRefGoogle Scholar
  23. Harvell, C. and Tollrian, R. 1999. Why inducible defenses? pp. 3–9, in R. Tollrian and C. Harvell (eds.), The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton.Google Scholar
  24. Hay, M. E. 1996. Marine chemical ecology: What’s known and what’s next? J. Exp. Mar. Biol. Ecol. 200(1–2):103–134.CrossRefGoogle Scholar
  25. Ianora, A., Boersma, M., Casotti, R., Fontana, A., Harder, J., Hoffmann, F., Pavia, H., Potin, P., Poulet, S. A., and Toth, G. 2006. New trends in marine chemical ecology. Estuar. Coasts 29:531–551.Google Scholar
  26. Jumaryatno, P., Stapleton, B. L., Hooper, J. N. A., Brecknell, D. J., Blanchfield, J. T., and Garson, M. J. 2007. A comparison of sesquiterpene scaffolds across different populations of the tropical marine sponge Acanthella cavernosa. J. Nat. Prod. 70:1725–1730.PubMedCrossRefGoogle Scholar
  27. Karban, R. and Baldwin, I. T. 1997. Induced Response to Herbivory. University of Chicago Press, Chicago.Google Scholar
  28. Kelly, S. R., Jensen, P. R., Henkel, T. P., Fenical, W., and Pawlik, J. R. 2003. Effects of Caribbean sponge extracts on bacterial attachment. Aquat. Microb. Ecol. 31:175–182.CrossRefGoogle Scholar
  29. Kinnel, R. B., Gehrken, H. P., and Scheuer, P. J. 1993. Palauamine—a cytotoxic and immunosuppresive hexacyclic bisuguanidine antibiotic from the sponge Stylotella agminata. J. Am. Chem. Soc. 115:3376–3377.CrossRefGoogle Scholar
  30. Kobayashi, J., Ohizumi, Y., Nakamura, H., and Hirata, Y. 1986. A novel anatagonist of serotonergic receptors, hymenidin, isolated from the okinawan marine sponge Hymeniacidon sp. Experientia 42:1176–1177.PubMedCrossRefGoogle Scholar
  31. Lindel, T., Hoffmann, H., Hochgurtel, M., and Pawlik, J. R. 2000. Structure-activity relationship of inhibition of fish feeding by sponge-derived and synthetic pyrrole-imidazole alkaloids. J. Chem. Ecol. 26:1477–1496.CrossRefGoogle Scholar
  32. Lotze, H. K., Worm, B., Molis, M., and Wahl, M. 2002. Effects of UV radiation and consumers on recruitment and succession of a marine macrobenthic community. Mar. Ecol. Prog. Ser. 243:57–66.CrossRefGoogle Scholar
  33. Martí, R., Uriz, M. J., and Turon, X. 2004. Seasonal and spatial variation of species toxicity in Mediterranean seaweed communities: Correlation to biotic and abiotic factors. Mar. Ecol. Prog. Ser. 282:73–85.CrossRefGoogle Scholar
  34. Martí, R., Uriz, M. J., and Turon, X. 2005. Spatial and temporal variation of natural toxicity in cnidarians, bryozoans and tunicates in Mediterranean caves. Sci. Mar. 69:485–492.Google Scholar
  35. McClintock, J. B. and Karentz, D. 1997. Mycosporine-like amino acids in 38 species of subtidal marine organisms from McMurdo Sound, Antarctica. Antarct. Sci. 9:392–398.CrossRefGoogle Scholar
  36. Miner, B. G., Sultan, S. E., Morgan, S. G., Padilla, D. K., and Relyea, R. A. 2005. Ecological consequences of phenotypic plasticity. Trends Ecol. Evol. 20:685–692.PubMedCrossRefGoogle Scholar
  37. Mohammed, R., Peng, J. N., Kelly, M., and Hamann, M. T. 2006. Cyclic heptapeptides from the Jamaican sponge Stylissa caribica. J. Nat. Prod. 69:1739–1744.PubMedCrossRefGoogle Scholar
  38. Nunez, C. V., de Almelda, E. V. R., Granato, A. C., Marques, S. O., Santos, K. O., Pereira, F. R., Macedo, M. L., Ferreira, A. G., Hajdu, E., Pinheiro, U. S., et al. 2008. Chemical variability within the marine sponge Aplysina fulva. Biochem. Syst. Ecol. 36:283–296.CrossRefGoogle Scholar
  39. Page, M., West, L., Northcote, P., Battershill, C., and Kelly, M. 2005. Spatial and temporal variability of cytotoxic metabolites in populations of the New Zealand sponge Mycale hentscheli. J. Chem. Ecol. 31:1161–1174.PubMedCrossRefGoogle Scholar
  40. Paul, V. J. 1992. pp. 245, Ecological Roles of Marine Natural Products. Comstock Press, Ithaca.Google Scholar
  41. Paul, V. J., Puglisi, M. P., and Ritson-Williams, R. 2006. Marine chemical ecology. Nat. Prod. Rep. 23:153–180.PubMedCrossRefGoogle Scholar
  42. Pavia, H., Cervin, G., Lindgren, A., and Aberg, P. 1997. Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar. Ecol. Prog. Ser. 157:139–146.CrossRefGoogle Scholar
  43. Pawlik, J. R., Chanas, B., Toonen, R. J., and Fenical, W. 1995. Defenses of Caribbean sponges against predatory reef fish.1. Chemical deterrency. Mar. Ecol. Prog. Ser. 127:183–194.CrossRefGoogle Scholar
  44. Pennings, S. C., Pablo, S. R., Paul, V. J., and Duffy, J. E. 1994. Effects of sponge secondary metabolites in different diets on feeding by 3 groups of consumers. J. Exp. Mar. Biol. Ecol. 180:137–149.CrossRefGoogle Scholar
  45. Pigliucci, M. 2005. Evolution of phenotypic plasticity: Where are we going now? Trends Ecol. Evol. 20(9):481–486.PubMedCrossRefGoogle Scholar
  46. Puglisi, M. P., Paul, V. J., and Slattery, M. 2000. Biogeographic comparisons of chemical and structural defenses of the Pacific gorgonians Annella mollis and A. reticulata. Mar. Ecol. Prog. Ser. 207:263–272.CrossRefGoogle Scholar
  47. Putz, A., Kloeppel, A., Pfannkuchen, M., Brummer, F., and Proksch, P. 2009. Depth-related alkaloid variation in mediterranean aplysina sponges. Z. Naturforsch. Sect. C 64:279–287.Google Scholar
  48. Richelle-Maurer, E., De Klujiver, M. J., Feio, S., Gaudencio, S., Gaspar, H., Gomez, R., Tavares, R., Van De Vyver, G., and Van Soest, R. W. M. 2003. Localization and ecological significance of oroidin and sceptrin in the Caribbean sponge Agelas conifera. Biochem. Syst. Ecol. 31:1073–1091.CrossRefGoogle Scholar
  49. Rohde, S. and Schupp, P. J. 2011. Allocation of chemical and structural defenses in the sponge Melophlus sarasinorum. J. Exp. Mar. Biol. Ecol. 399:76–83.PubMedCrossRefGoogle Scholar
  50. Rohde, S., Molis, M., and Wahl, M. 2004. Regulation of anti-herbivore defence by Fucus vesiculosus in response to various cues. J. Ecol. 92:1011–1018.CrossRefGoogle Scholar
  51. Sacristan-Soriano, O., Banaigs, B., and Becerro, M. A. 2011. Relevant spatial scales of chemical variation in Aplysina aerophoba. Mar. Drugs 9:2499–2513.PubMedCrossRefGoogle Scholar
  52. Shick, J. M., Romaine-Lioud, S., Ferrier-Pages, C., and Gattuso, J. P. 1999. Ultraviolet-B radiation stimulates shikimate pathway-dependent accumulation of mycosporine-like amino acids in the coral Stylophora pistillata despite decreases in its population of symbiotic dinoflagellates. Limnol. Oceanogr. 44:1667–1682.CrossRefGoogle Scholar
  53. Slattery M. and Gochfeld D. J. 2012. Chemical interactions among marine competitors, and host-pathogens, in: E. Fattorusso, W. H. Gerwick, O. Taglialatela-Scafati (eds.), Handbook of Marine Natural Products: Springer.Google Scholar
  54. Slattery, M. and Paul, V. J. 2008. Indirect effects of bleaching on predator deterrence in the tropical Pacific soft coral Sinularia maxima. Mar. Ecol. Prog. Ser. 354:169–179.CrossRefGoogle Scholar
  55. Slattery, M., Avila, C., Starmer, J., and Paul, V. J. 1998. A sequestered soft coral diterpene in the aeolid nudibranch Phyllodesmium guamensis. J. Exp. Mar. Biol. Ecol. 226:33–49.CrossRefGoogle Scholar
  56. Slattery, M., Starmer, J., and Paul, V. J. 2001. Temporal and spatial variation in defensive metabolites of the tropical Pacific soft corals Sinularia maxima and S. polydactyla. Mar. Biol. 138:1183–1193.CrossRefGoogle Scholar
  57. Slattery, M., Kamel, H. N., Ankisetty, S., Gochfeld, D. J., Hoover, C. A., and Thacker, R. W. 2008. Hybrid vigor in a tropical Pacific soft-coral community. Ecol. Monogr. 78:423–443.CrossRefGoogle Scholar
  58. Stachowicz, J. J. and Lindquist, N. 1997. Chemical defense among hydroids on pelagic Sargassum: Predator deterrence and absorption of solar UV radiation by secondary metabolites. Mar. Ecol. Prog. Ser. 155:115–126.CrossRefGoogle Scholar
  59. Steindler, L., Beer, S., and Ilan, M. 2002. Photosymbiosis in intertidal and subtidal tropical sponges. Symbiosis 33:263–273.Google Scholar
  60. Supriyono, A., Schwarz, B., Wray, V., Witte, L., Muller, W. E. G., Vansoest, R., Sumaryono, W., and Proksch, P. 1995. Bioactive alkaloids from the tropical marine sponge Axinella carteri. Z. Naturforsch. Sect. C 50:669–674.Google Scholar
  61. Targett, N. M., Coen, L. D., Boettcher, A. A., and Tanner, C. E. 1992. Biogeographic comparisons of marine algal polyphenolics—evidence against a latitudinal trend. Oecologia 89:464–470.Google Scholar
  62. Tasdemir, D., Mallon, R., Greenstein, M., Feldberg, L. R., Kim, S. C., Collins, K., Wojciechowicz, D., Mangalindan, G. C., Concepcion, G. P., Harper, M. K., et al. 2002. Aldisine alkaloids from the Philippine sponge Stylissa massa are potent inhibitors of mitogen-activated protein kinase kinase-1 (MEK-1). J. Med. Chem. 45:529–532.PubMedCrossRefGoogle Scholar
  63. Teeyapant, R. and Proksch, P. 1993. Biotransformation of brominated compounds in the marine sponge Verongia aerophoba—Evidence for an induced chemical defense. Naturwissenschaften 80:369–370.CrossRefGoogle Scholar
  64. Thompson, J. E., Murphy, P. T., Bergquist, P. R., and Evans, E. A. 1987. Environmentally induced variation in diterpene composition of the marine sponge Rhopaleides odorabile. Biochem. Syst. Ecol. 15:595–606.CrossRefGoogle Scholar
  65. Thoms, C., Horn, M., Wagner, M., Hentschel, U., and Proksch, P. 2003. Monitoring microbial diversity and natural product profiles of the sponge Aplysina cavernicola following transplantation. Mar. Biol. 142:685–692.Google Scholar
  66. Turon, X., Becerro, M. A., and Uriz, M. J. 1996. Seasonal patterns of toxicity in benthic invertebrates: The encrusting sponge Crambe crambe (Poecilosclerida). Oikos 75:33–40.CrossRefGoogle Scholar
  67. Turon, X., Marti, R., and Uriz, M. J. 2009. Chemical bioactivity of sponges along an environmental gradient in a Mediterranean cave. Sci. Mar. 73:387–397.CrossRefGoogle Scholar
  68. Uriz, M. J., Turon, X., Becerro, M. A., Galera, J., and Lozano, J. 1995. Patterns of resource allocation to somatic, defensive and reproductive functions in the mediterranean encrusting sponge Crambe crambe (Demospongiae, Poecilosclerida). Mar. Ecol. Prog. Ser. 124:159–170.CrossRefGoogle Scholar
  69. Van Soest R. W. M., Boury-Esnault N., Hooper J. N. A., Rützler K., De Voogd N. J., Alvarez De Glasby B., Hajdu E., Pisera A. B., Manconi R., Schoenberg C., et al. 2010. World Porifera database.
  70. Verschoor, A. M., Vos, M., and van der Stap, I. 2004. Inducible defences prevent strong population fluctuations in bi- and tritrophic food chains. Ecol. Lett. 7:1143–1148.CrossRefGoogle Scholar
  71. Wahl, M. 1989. Marine epibiosis.1. Fouling and antifouling—some basic aspects. Mar. Ecol. Prog. Ser. 58:175–189.CrossRefGoogle Scholar
  72. Wright, J. T., de Nys, R., and Steinberg, P. D. 2000. Geographic variation in halogenated furanones from the red alga Delisea pulchra and associated herbivores and epiphytes. Mar. Ecol. Prog. Ser. 207:227–241.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Sven Rohde
    • 1
  • Deborah J. Gochfeld
    • 2
  • Sridevi Ankisetty
    • 3
  • Bharathi Avula
    • 2
  • Peter J. Schupp
    • 1
  • Marc Slattery
    • 2
    • 3
  1. 1.Carl-von-Ossietzky University Oldenburg, Institute for Chemistry and Biology of the Marine Environment (ICBM)WilhelmshavenGermany
  2. 2.National Center for Natural Products ResearchUniversity of MississippiUniversityUSA
  3. 3.Department of PharmacognosyUniversity of MississippiUniversityUSA

Personalised recommendations