Advertisement

Palatability and Chemical Defense of Phragmites australis to the Marsh Periwinkle Snail Littoraria irrorata

  • Lindsey G. Hendricks
  • Hannah E. Mossop
  • Cynthia E. Kicklighter
Article

Abstract

Coastal marsh habitats are impacted by many disturbances, including habitat destruction, pollution, and the introduction of invasive species. The common reed, Phragmites australis, has been particularly invasive in the mesohaline regions of the Chesapeake Bay, but few studies have investigated its role in trophic interactions with North American marsh consumers. The marsh periwinkle snail Littoraria irrorata is a common grazer in marshes and grazes on the native grass Spartina alterniflora. Whether this snail grazes on Phragmites has not been addressed. We found Spartina leaves to be tougher than those of Phragmites, but despite this, snails consumed significantly more Spartina than Phragmites. Subsequent experiments demonstrated that Phragmites is chemically deterrent to snails by an unknown, moderately polar, compound. Further studies are required to more fully understand the interactions between Phragmites, herbivores, and Spartina, and how they may impact marsh ecosystems.

Key Words

Estuarine Exotic Non-native Plant-herbivore Resistance to herbivory 

Notes

Acknowledgments

We thank Jordan Yoder for help with field collections and Ali Brock for snail care. Two anonymous reviewers improved the manuscript. Funding was provided to L.G.H. through a Goucher College Presidential fellowship and to H.M. and C.E.K. by the Goucher College summer research program.

References

  1. Able, K. W., and Hagan, S. M. 2003. Impact of common reed, Phragmites australis, on essential fish habitat: influence on reproduction, embryological development, and larval abundance of mummichog, Fundulus heteroclitus. Estuaries 26:40–50.CrossRefGoogle Scholar
  2. Barlocher, F. N., and Newell, S. Y. 1994. Phenolics and proteins affecting palatability of Spartina leaves to the gastropod Littoraria irrorata. Mar. Ecol. 15:65–75.CrossRefGoogle Scholar
  3. Bolser, R., and Hay, M. 1996. Are tropical plants better defended? Palatability and defenses of temperate vs. tropical seaweeds. Ecology 77:2269–2286.CrossRefGoogle Scholar
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.PubMedCrossRefGoogle Scholar
  5. Burdick, D. M., and Konisky, R. A. 2003. Determinants of expansion for Phragmites australis, common reed, in natural and impacted coastal marshes. Estuaries 26:407–416.CrossRefGoogle Scholar
  6. Chambers, R. M., Meyerson, L. A., and Saltonstall, K. 1999. Expansion of Phragmites australis into wetlands of North America. Aquat. Bot. 64:261–273.CrossRefGoogle Scholar
  7. Coley, P. D., Bryant, J. P., and Chapin, F. S. 1985. Resource availability and plant antiherbivore defense. Science 230:895–899.PubMedCrossRefGoogle Scholar
  8. Cross, D. H., and Fleming, K. L. 1989. Control of Phragmites or common reed. U.S. Fish and Wildlife Service, Office of Information Transfer, Ft. Collins, CO, USA FWS/OIT- 13.4.12:1–5.Google Scholar
  9. Cruz-Rivera, E., and Hay, M. E. 2003. Prey nutritional quality interacts with chemical defenses to affect consumer feeding and fitness. Ecol. Monogr. 73:483–506.CrossRefGoogle Scholar
  10. Ford, M. A., and Grace, J. B. 1998. Effects of vertebrate herbivores on soil processes, plant biomass, litter accumulation and soil elevation changes in a coastal marsh. J. Ecol. 86:974–982.CrossRefGoogle Scholar
  11. Gedan, K. B., Silliman, B. R., and Bertness, M. D. 2009. Centuries of human-driven change in salt marsh ecosystems. Annu. Rev. Mar. Sci. 1:117–141.CrossRefGoogle Scholar
  12. Graca, M. A., Newell, S. Y., and Kneib, R. T. 2000. Grazing rates of organic matter and living fungal biomass of decaying Spartina alterniflora by three species of salt-marsh invertebrates. Mar. Biol. 136:281–289.CrossRefGoogle Scholar
  13. Gratton, C., and Denno, R. F. 2006. Arthropod food web restoration following removal of an invasive wetland plant. Ecol. Appl. 16:622–631.PubMedCrossRefGoogle Scholar
  14. Hanson, S. R., Osgood, D. T., and Yozzo, D. J. 2002. Nekton use of a Phragmites australis Narsh on the Hudson River, New York, USA. Wetlands 22:326–333.CrossRefGoogle Scholar
  15. Hay, M. E., Kappel, Q. E., and Fenical, W. 1994. Synergisms in plant defenses against herbivores: interactions of chemistry, calcification, and plant quality. Ecology 75:1714–1726.CrossRefGoogle Scholar
  16. Herms, D. A., and Mattson, W. J. 1992. The dilemma of plants: to grow or defend. Q. Rev. Biol. 67:283–335.CrossRefGoogle Scholar
  17. Holdredge, C., Bertness, M. D., and Altiere, A. H. 2009. Role of crab herbivory in die-off of New England marshes. Conserv. Biol. 23:672–679.CrossRefGoogle Scholar
  18. Jeffries, R. L., Henry, H. A. L, and Abraham, K. F. 2003. Agricultural nutrient subsidies to migratory geese and ecological change to arctic coastal habitats, in G. A. Polis and M. A. Power (eds.). Food Webs at the Landscape Level. University of Chicago Press, Chicago, IL.Google Scholar
  19. Jivoff, P. R., and Able, K. W. 2003. Blue crab, Callinectes sapidus, response to the invasive common reed, Phragmites australis: abundance, size, sex ratio, and molting frequency. Estuaries 26:587–595.CrossRefGoogle Scholar
  20. Kicklighter, C. E., and Hay, M. E. 2006. Integrating prey defensive traits: contrasts of marine worms from temperate and tropical habitats. Ecol. Monogr. 76:195–215.CrossRefGoogle Scholar
  21. Kicklighter, C. E., Kubanek, J., Barsby, T., and Hay, M. E. 2003. Palatability and defense of some tropical infaunal worms: alkylpyrrole sulfamates as deterrents to fish feeding. Mar. Ecol. Prog. Ser. 263:299–306.CrossRefGoogle Scholar
  22. King, R. S., Deluca, W. V., Whigham, D. F., and Marra, P. P. 2007. Threshold effects of coastal urbanization on Phragmites australis (common reed) abundance and foliar nitrogen in Chesapeake Bay. Estuar. Coast. 30:469–481.CrossRefGoogle Scholar
  23. Kupchan, S. M., Britton, R. W., Lacadie, J. A., Ziegler, M. F., and Sigel, C. W. 1975. The isolation and structural elucidation of bruceantin and bruceantinol. J. Org. Chem. 40:648–654.PubMedCrossRefGoogle Scholar
  24. Lambert, A. M. 2005. Native and exotic Phragmites australis in Rhode Island: distribution and differential resistance to insect herbivores. Doctoral dissertation, University of Rhode Island, Kingston, RI.Google Scholar
  25. LAMBERT, A. M., WINIARSKI, K., and CASAGRANDE, R. A. 2007. Distribution and impact of exotic gall flies (Lipara sp.) on native and exotic Phragmites australis. Aq. Bot. 86:163–170.Google Scholar
  26. Lathrop, R. G. Windham, L., and Montesano, P. 2003. Does Phragmites expansion alter the structure and function of marsh landscapes? Patterns and processes revisited. Estuar. Coast. 26:423–435.CrossRefGoogle Scholar
  27. Long, J. D., Mitchell, J. L., and Sotka, E. E. 2011. Local consumers induce resistance differentially between Spartina populations in the field. Ecology 92:180–188.PubMedCrossRefGoogle Scholar
  28. Mccormick, M. K., Kettenring, K. M., Baron, H. M., and Whigham, D. F. 2010. Extent and reproductive mechanisms of Phragmites australis spread in brackish Wetlands in Chesapeake Bay, Maryland (USA). Wetlands 30:67–74.CrossRefGoogle Scholar
  29. NEWEL, S. Y., and BARLOCHER, F. 1993. Removal of fungal and total organic matter from decaying cordgrass leaves by shredder snails. J. Exp. Mar. Biol. Ecol. 171: 39–49.Google Scholar
  30. Osgood, D. T., Yozzo, D. J., Chambers, R. M., Jacobson, D., Hoffman, T., and Wnek, J. 2003. Tidal hydrology and habitat utilization by resident nekton in Phragmites and non-Phragmites marshes. Estuaries 26:522–533.CrossRefGoogle Scholar
  31. Park, M. G., and Blossey, B. 2008. Importance of plant traits and herbivory for invasiveness of Phragmites australis (Poaceae). Am. J. Bot. 95:1557–1568.PubMedCrossRefGoogle Scholar
  32. Pennings, S. C., and Bertness, M. D. 2001. Salt marsh communities, in M. D. Bertness, S. D. Gaines, and M. E. Hay (eds.). Marine Community Ecology. Sinauer Associates, Sunderland, USA.Google Scholar
  33. Pennings, S. C., and Silliman, B. R. 2005. Linking biogeography and community ecology: latitudinal variation in plant-herbivore interaction strength. Ecology 86:2310–2319.CrossRefGoogle Scholar
  34. Pennings, S. C., Carefoot, T. H., Siska, E. L., Chase, M. E., and Page, T. A. 1998. Feeding preferences of a generalist salt marsh crab: relative importance of multiple plant traits. Ecology 79:1968–1979.CrossRefGoogle Scholar
  35. Posey, M. H., Alphin, T. D., Meyer, D. L., and Johnson, J. M. 2003. Benthic communities of common reed Phragmites australis and marsh cordgrass Spartina alterniflora marshes in Chesapeake Bay. Mar. Ecol. Prog. Ser. 261:51–61.CrossRefGoogle Scholar
  36. RAICHEL, D. L, ABLE, K. W., and HARTMAN, J. M. 2003. Prey of a resident marsh fish in the Hackensack Meadowlands, New Jersey. Estuaries. 26:511–521.Google Scholar
  37. Rice, D., Rooth, J., and Stevenson, J. C. 2000. Colonization and expansion of Phragmites australis in upper Chesapeake Bay tidal marshes. Wetlands 20:280–299.CrossRefGoogle Scholar
  38. Rudrappa, T., and Bias, H. P. 2008. Genetics, novel weapons and rhizospheric microcosmal signaling in the invasion of Phragmites australis. Plant Sig. 3:1–5.CrossRefGoogle Scholar
  39. Rudrappa, T., Bonsall, J., Gallagher, J. L., Seliskar, D. M., and Bais, H. P. 2007. Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity. J. Chem. Ecol. 33:1898–1918.PubMedCrossRefGoogle Scholar
  40. Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc. Natl. Acad. Sci. U. S. A. 99:2445–2449.PubMedCrossRefGoogle Scholar
  41. Saltonstall, K. 2003. A rapid method for identifying the origin of North American Phragmites populations using RFLP analysis. Wetlands 23:1043–1047.CrossRefGoogle Scholar
  42. Silliman, B. R., and Bertness, M. D. 2002. A trophic cascade regulates salt marsh primary productivity. Proc. Natl. Acad. Sci. U. S. A. 99:10500–10505.PubMedCrossRefGoogle Scholar
  43. Silliman, B. R., and Newell, S. Y. 2003. Fungal farming in a snail. Proc. Natl. Acad. Sci. U. S. A. 100:15643–15648.PubMedCrossRefGoogle Scholar
  44. Silliman, B. R., van de Koppel, J., Bertness, M. E., Stanton, L. E., and Mendelssohn, I. A. 2005. Drought, snails, and large-scale die-off of Southern U.S. salt marshes. Science 310:1803–1806.PubMedCrossRefGoogle Scholar
  45. Siska, E. L., Pennings, S. C., Buck, T. L., and Hanisak, M. D. 2002. Latitudinal variation in palatability of salt-marsh plants: which traits are responsible? Ecology 83:3369–3381.CrossRefGoogle Scholar
  46. Talley, T. S., Crooks, J. A., and Levin, L. A. 2001. Habitat utilization and alternation by the invasive burrowing isopod, Sphaeroma quoyanum, in California salt marshes. Mar. Biol. 138:561–573.CrossRefGoogle Scholar
  47. Tewksbury, L., Casagrande, R., Blossey, B., Häfliger, P., and Schwarzländer, M. 2002. Potential for biological control of Phragmites australis in North America. Biol. Contr. 23:191–212.CrossRefGoogle Scholar
  48. Zar, J. H. 1999. Biostatistical Analysis, 4th ed. Prentice Hall, Upper Saddle River, USA. 663 pgs.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Lindsey G. Hendricks
    • 1
  • Hannah E. Mossop
    • 1
  • Cynthia E. Kicklighter
    • 1
  1. 1.Department of Biological SciencesGoucher CollegeBaltimoreUSA

Personalised recommendations