Skip to main content
Log in

Palatability and Chemical Defense of Phragmites australis to the Marsh Periwinkle Snail Littoraria irrorata

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Coastal marsh habitats are impacted by many disturbances, including habitat destruction, pollution, and the introduction of invasive species. The common reed, Phragmites australis, has been particularly invasive in the mesohaline regions of the Chesapeake Bay, but few studies have investigated its role in trophic interactions with North American marsh consumers. The marsh periwinkle snail Littoraria irrorata is a common grazer in marshes and grazes on the native grass Spartina alterniflora. Whether this snail grazes on Phragmites has not been addressed. We found Spartina leaves to be tougher than those of Phragmites, but despite this, snails consumed significantly more Spartina than Phragmites. Subsequent experiments demonstrated that Phragmites is chemically deterrent to snails by an unknown, moderately polar, compound. Further studies are required to more fully understand the interactions between Phragmites, herbivores, and Spartina, and how they may impact marsh ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Able, K. W., and Hagan, S. M. 2003. Impact of common reed, Phragmites australis, on essential fish habitat: influence on reproduction, embryological development, and larval abundance of mummichog, Fundulus heteroclitus. Estuaries 26:40–50.

    Article  Google Scholar 

  • Barlocher, F. N., and Newell, S. Y. 1994. Phenolics and proteins affecting palatability of Spartina leaves to the gastropod Littoraria irrorata. Mar. Ecol. 15:65–75.

    Article  Google Scholar 

  • Bolser, R., and Hay, M. 1996. Are tropical plants better defended? Palatability and defenses of temperate vs. tropical seaweeds. Ecology 77:2269–2286.

    Article  Google Scholar 

  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Article  PubMed  CAS  Google Scholar 

  • Burdick, D. M., and Konisky, R. A. 2003. Determinants of expansion for Phragmites australis, common reed, in natural and impacted coastal marshes. Estuaries 26:407–416.

    Article  Google Scholar 

  • Chambers, R. M., Meyerson, L. A., and Saltonstall, K. 1999. Expansion of Phragmites australis into wetlands of North America. Aquat. Bot. 64:261–273.

    Article  Google Scholar 

  • Coley, P. D., Bryant, J. P., and Chapin, F. S. 1985. Resource availability and plant antiherbivore defense. Science 230:895–899.

    Article  PubMed  CAS  Google Scholar 

  • Cross, D. H., and Fleming, K. L. 1989. Control of Phragmites or common reed. U.S. Fish and Wildlife Service, Office of Information Transfer, Ft. Collins, CO, USA FWS/OIT- 13.4.12:1–5.

  • Cruz-Rivera, E., and Hay, M. E. 2003. Prey nutritional quality interacts with chemical defenses to affect consumer feeding and fitness. Ecol. Monogr. 73:483–506.

    Article  Google Scholar 

  • Ford, M. A., and Grace, J. B. 1998. Effects of vertebrate herbivores on soil processes, plant biomass, litter accumulation and soil elevation changes in a coastal marsh. J. Ecol. 86:974–982.

    Article  Google Scholar 

  • Gedan, K. B., Silliman, B. R., and Bertness, M. D. 2009. Centuries of human-driven change in salt marsh ecosystems. Annu. Rev. Mar. Sci. 1:117–141.

    Article  Google Scholar 

  • Graca, M. A., Newell, S. Y., and Kneib, R. T. 2000. Grazing rates of organic matter and living fungal biomass of decaying Spartina alterniflora by three species of salt-marsh invertebrates. Mar. Biol. 136:281–289.

    Article  Google Scholar 

  • Gratton, C., and Denno, R. F. 2006. Arthropod food web restoration following removal of an invasive wetland plant. Ecol. Appl. 16:622–631.

    Article  PubMed  Google Scholar 

  • Hanson, S. R., Osgood, D. T., and Yozzo, D. J. 2002. Nekton use of a Phragmites australis Narsh on the Hudson River, New York, USA. Wetlands 22:326–333.

    Article  Google Scholar 

  • Hay, M. E., Kappel, Q. E., and Fenical, W. 1994. Synergisms in plant defenses against herbivores: interactions of chemistry, calcification, and plant quality. Ecology 75:1714–1726.

    Article  Google Scholar 

  • Herms, D. A., and Mattson, W. J. 1992. The dilemma of plants: to grow or defend. Q. Rev. Biol. 67:283–335.

    Article  Google Scholar 

  • Holdredge, C., Bertness, M. D., and Altiere, A. H. 2009. Role of crab herbivory in die-off of New England marshes. Conserv. Biol. 23:672–679.

    Article  Google Scholar 

  • Jeffries, R. L., Henry, H. A. L, and Abraham, K. F. 2003. Agricultural nutrient subsidies to migratory geese and ecological change to arctic coastal habitats, in G. A. Polis and M. A. Power (eds.). Food Webs at the Landscape Level. University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Jivoff, P. R., and Able, K. W. 2003. Blue crab, Callinectes sapidus, response to the invasive common reed, Phragmites australis: abundance, size, sex ratio, and molting frequency. Estuaries 26:587–595.

    Article  Google Scholar 

  • Kicklighter, C. E., and Hay, M. E. 2006. Integrating prey defensive traits: contrasts of marine worms from temperate and tropical habitats. Ecol. Monogr. 76:195–215.

    Article  Google Scholar 

  • Kicklighter, C. E., Kubanek, J., Barsby, T., and Hay, M. E. 2003. Palatability and defense of some tropical infaunal worms: alkylpyrrole sulfamates as deterrents to fish feeding. Mar. Ecol. Prog. Ser. 263:299–306.

    Article  Google Scholar 

  • King, R. S., Deluca, W. V., Whigham, D. F., and Marra, P. P. 2007. Threshold effects of coastal urbanization on Phragmites australis (common reed) abundance and foliar nitrogen in Chesapeake Bay. Estuar. Coast. 30:469–481.

    Article  CAS  Google Scholar 

  • Kupchan, S. M., Britton, R. W., Lacadie, J. A., Ziegler, M. F., and Sigel, C. W. 1975. The isolation and structural elucidation of bruceantin and bruceantinol. J. Org. Chem. 40:648–654.

    Article  PubMed  CAS  Google Scholar 

  • Lambert, A. M. 2005. Native and exotic Phragmites australis in Rhode Island: distribution and differential resistance to insect herbivores. Doctoral dissertation, University of Rhode Island, Kingston, RI.

  • LAMBERT, A. M., WINIARSKI, K., and CASAGRANDE, R. A. 2007. Distribution and impact of exotic gall flies (Lipara sp.) on native and exotic Phragmites australis. Aq. Bot. 86:163–170.

  • Lathrop, R. G. Windham, L., and Montesano, P. 2003. Does Phragmites expansion alter the structure and function of marsh landscapes? Patterns and processes revisited. Estuar. Coast. 26:423–435.

    Article  Google Scholar 

  • Long, J. D., Mitchell, J. L., and Sotka, E. E. 2011. Local consumers induce resistance differentially between Spartina populations in the field. Ecology 92:180–188.

    Article  PubMed  Google Scholar 

  • Mccormick, M. K., Kettenring, K. M., Baron, H. M., and Whigham, D. F. 2010. Extent and reproductive mechanisms of Phragmites australis spread in brackish Wetlands in Chesapeake Bay, Maryland (USA). Wetlands 30:67–74.

    Article  Google Scholar 

  • NEWEL, S. Y., and BARLOCHER, F. 1993. Removal of fungal and total organic matter from decaying cordgrass leaves by shredder snails. J. Exp. Mar. Biol. Ecol. 171: 39–49.

  • Osgood, D. T., Yozzo, D. J., Chambers, R. M., Jacobson, D., Hoffman, T., and Wnek, J. 2003. Tidal hydrology and habitat utilization by resident nekton in Phragmites and non-Phragmites marshes. Estuaries 26:522–533.

    Article  Google Scholar 

  • Park, M. G., and Blossey, B. 2008. Importance of plant traits and herbivory for invasiveness of Phragmites australis (Poaceae). Am. J. Bot. 95:1557–1568.

    Article  PubMed  Google Scholar 

  • Pennings, S. C., and Bertness, M. D. 2001. Salt marsh communities, in M. D. Bertness, S. D. Gaines, and M. E. Hay (eds.). Marine Community Ecology. Sinauer Associates, Sunderland, USA.

  • Pennings, S. C., and Silliman, B. R. 2005. Linking biogeography and community ecology: latitudinal variation in plant-herbivore interaction strength. Ecology 86:2310–2319.

    Article  Google Scholar 

  • Pennings, S. C., Carefoot, T. H., Siska, E. L., Chase, M. E., and Page, T. A. 1998. Feeding preferences of a generalist salt marsh crab: relative importance of multiple plant traits. Ecology 79:1968–1979.

    Article  Google Scholar 

  • Posey, M. H., Alphin, T. D., Meyer, D. L., and Johnson, J. M. 2003. Benthic communities of common reed Phragmites australis and marsh cordgrass Spartina alterniflora marshes in Chesapeake Bay. Mar. Ecol. Prog. Ser. 261:51–61.

    Article  Google Scholar 

  • RAICHEL, D. L, ABLE, K. W., and HARTMAN, J. M. 2003. Prey of a resident marsh fish in the Hackensack Meadowlands, New Jersey. Estuaries. 26:511–521.

  • Rice, D., Rooth, J., and Stevenson, J. C. 2000. Colonization and expansion of Phragmites australis in upper Chesapeake Bay tidal marshes. Wetlands 20:280–299.

    Article  Google Scholar 

  • Rudrappa, T., and Bias, H. P. 2008. Genetics, novel weapons and rhizospheric microcosmal signaling in the invasion of Phragmites australis. Plant Sig. 3:1–5.

    Article  Google Scholar 

  • Rudrappa, T., Bonsall, J., Gallagher, J. L., Seliskar, D. M., and Bais, H. P. 2007. Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity. J. Chem. Ecol. 33:1898–1918.

    Article  PubMed  CAS  Google Scholar 

  • Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc. Natl. Acad. Sci. U. S. A. 99:2445–2449.

    Article  PubMed  CAS  Google Scholar 

  • Saltonstall, K. 2003. A rapid method for identifying the origin of North American Phragmites populations using RFLP analysis. Wetlands 23:1043–1047.

    Article  Google Scholar 

  • Silliman, B. R., and Bertness, M. D. 2002. A trophic cascade regulates salt marsh primary productivity. Proc. Natl. Acad. Sci. U. S. A. 99:10500–10505.

    Article  PubMed  CAS  Google Scholar 

  • Silliman, B. R., and Newell, S. Y. 2003. Fungal farming in a snail. Proc. Natl. Acad. Sci. U. S. A. 100:15643–15648.

    Article  PubMed  CAS  Google Scholar 

  • Silliman, B. R., van de Koppel, J., Bertness, M. E., Stanton, L. E., and Mendelssohn, I. A. 2005. Drought, snails, and large-scale die-off of Southern U.S. salt marshes. Science 310:1803–1806.

    Article  PubMed  CAS  Google Scholar 

  • Siska, E. L., Pennings, S. C., Buck, T. L., and Hanisak, M. D. 2002. Latitudinal variation in palatability of salt-marsh plants: which traits are responsible? Ecology 83:3369–3381.

    Article  Google Scholar 

  • Talley, T. S., Crooks, J. A., and Levin, L. A. 2001. Habitat utilization and alternation by the invasive burrowing isopod, Sphaeroma quoyanum, in California salt marshes. Mar. Biol. 138:561–573.

    Article  Google Scholar 

  • Tewksbury, L., Casagrande, R., Blossey, B., Häfliger, P., and Schwarzländer, M. 2002. Potential for biological control of Phragmites australis in North America. Biol. Contr. 23:191–212.

    Article  Google Scholar 

  • Zar, J. H. 1999. Biostatistical Analysis, 4th ed. Prentice Hall, Upper Saddle River, USA. 663 pgs.

Download references

Acknowledgments

We thank Jordan Yoder for help with field collections and Ali Brock for snail care. Two anonymous reviewers improved the manuscript. Funding was provided to L.G.H. through a Goucher College Presidential fellowship and to H.M. and C.E.K. by the Goucher College summer research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia E. Kicklighter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendricks, L.G., Mossop, H.E. & Kicklighter, C.E. Palatability and Chemical Defense of Phragmites australis to the Marsh Periwinkle Snail Littoraria irrorata . J Chem Ecol 37, 838–845 (2011). https://doi.org/10.1007/s10886-011-9990-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-011-9990-8

Key Words

Navigation