Synergistic or Antagonistic Modulation of Oviposition Response of Two Swallowtail Butterflies, Papilio maackii and P. protenor, to Phellodendron amurense by Its Constitutive Prenylated Flavonoid, Phellamurin

  • Keiichi Honda
  • Hisashi Ômura
  • Mamoru Chachin
  • Seiji Kawano
  • Takashi A. Inoue


Papilio maackii females prefer a rutaceous plant, Phellodendron amurense, for oviposition, whereas another semi-sympatric Rutaceae feeder, Papilio protenor, never exploits this plant as a host in nature. However, the larvae of both species perform well on this plant in the laboratory. Phellamurin, a flavonoid present in the organic fraction from P. amurense inhibits egg laying by P. protenor. We examined whether phellamurin is involved in the differential acceptance of P. amurense by the two butterflies. The ovipositing females of P. maackii readily accepted P. amurense and a methanolic extract of the foliage, while P. protenor rejected them entirely. However, the aqueous fraction derived from the extract elicited significant oviposition responses of similar levels from the two species. Phellamurin did not induce oviposition behavior in P. protenor females. In contrast, P. maackii was stimulated to oviposit by phellamurin at concentrations exceeding 0.2%. The response was dose-dependent and reached ca. 70% at 2% phellamurin, which is approximately equivalent to its natural abundance in young leaves of P. amurense. Since the aqueous fraction was very stimulatory to both species, the combined effect of phellamurin and the aqueous fraction on oviposition was tested. The addition of phellamurin to the aqueous fraction enhanced the ovipositional activity of P. maackii, but dramatically suppressed the oviposition response of P. protenor even at 0.1% concentration. These results, taken together with those obtained from electrophysiological recordings with foretarsal chemosensilla, indicate that phellamurin acts as an oviposition stimulant for P. maackii, and as a potent deterrent for P. protenor. The results suggest that host range expansion or host shifts may be made by ovipositing females that overcome phytochemical barriers.

Key Words

Host selection Host shift Rutaceae Dihydroflavonol glucoside Oviposition stimulant Oviposition deterrent Lepidoptera Papilionidae 



This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science to K. Honda (No. 14560039).


  1. Abad-García, B., Garmón-Lobato, S., Berrueta, L. A., Gallo, B., and Vicente, F. 2009. A fragmentation study of dihydroquercetin using triple quadrupole mass spectrometry and its application for identification of dihydroflavonols in Citrus juices. Rapid Commun. Mass Spectrom. 23:2785–2792.PubMedCrossRefGoogle Scholar
  2. Aubert, J., Legal, L., Descimon, H., and Michel, F. 1999. Molecular phylogeny of swallowtail butterflies of the tribe Papilionini (Papilionidae, Lepidoptera). Mol. Phylogenet. Evol. 12:156–167.PubMedCrossRefGoogle Scholar
  3. Berenbaum, M. R. 1991. Comparative processing of allelochemicals in the Papilionidae (Lepidoptera). Arch. Insect Biochem. Physiol. 17:213–221.CrossRefGoogle Scholar
  4. Bernays, E. A. 2001. Neural limitations in phytophagous insects: Implications for diet breadth and evolution of host affiliation. Annu. Rev. Entomol. 46:703–727.PubMedCrossRefGoogle Scholar
  5. Chachin, M., Honda, K., and Ômura, H. 2007. Appraisal of the acceptability of subtropical rutaceous plants for a swallowtail butterfly, Papilio protenor demetrius (Lepidoptera: Papilionidae). Appl. Entomol. Zool. 42:121–128.CrossRefGoogle Scholar
  6. Du, Y.-J., Van Loon, J. J. A., and Renwick, J. A. A. 1995. Contact chemoreception of oviposition-stimulating glucosinolates and an oviposition-deterrent cardenolide in two subspecies of Pieris napi. Physiol. Entomol. 20: 164–174.CrossRefGoogle Scholar
  7. Endo, S., and Nihira, I. 1990. Larval Food of Japanese Butterflies. Group Tamamushi, Tokyo (in Japanese).Google Scholar
  8. Feeny, P. 1991. Chemical constraints on the evolution of swallowtail butterflies, pp. 315–340, in P. W. Price, T. M. Lewinsohn, G. W. Fernandes, W. W. and Benson (eds.). Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions. Wiley & Sons, New York.Google Scholar
  9. Harborne, J. B., and Baxter, H. 1993. Phytochemical Dictionary: A Handbook of Bioactive Compounds from Plants. Taylor & Francis Ltd., London.Google Scholar
  10. Honda, K. 1990. Identification of host-plant chemicals stimulating oviposition by swallowtail butterfly, Papilio protenor. J. Chem. Ecol. 16:325–337CrossRefGoogle Scholar
  11. Honda, K. 1995. Chemical basis of differential oviposition by lepidopterous insects. Arch. Insect Biochem. Physiol. 30:1–23.CrossRefGoogle Scholar
  12. Honda, K. 2005. Larval feeding habit and host selection, pp. 255–301, in K. Honda, Y. Kato (eds.). Biology of Butterflies. University of Tokyo Press, Tokyo (in Japanese).Google Scholar
  13. Honda, K., and Hayashi, N. 1995a. Chemical factors in rutaceous plants regulating host selection by two swallowtail butterflies, Papilio protenor and P. xuthus (Lepidoptera:Papilionidae). Appl. Entomol. Zool. 30:327–334.Google Scholar
  14. Honda, K., and Hayashi, N. 1995b. A flavonoid glucoside, phellamurin, regulates differential oviposition on a rutaceous plant, Phellodendron amurense, by two sympatric swallowtail butterflies, Papilio protenor and P. xuthus: The front line of a coevolutionary arms race? J. Chem. Ecol. 21:1531–1539.CrossRefGoogle Scholar
  15. Honda, K., Ômura, H., Hori, M., and Kainoh, Y. 2010. Allelochemicals in plant-insect interactions, pp. 563–594, in L. Mander and H.-W. Lui (eds.). Comprehensive Natural Products II. Chemistry and Biology. Elsevier, Oxford.CrossRefGoogle Scholar
  16. Inoue, T. A. 2006. Morphology of foretarsal ventral surfaces of Japanese Papilio butterflies and relations between these morphology, phylogeny and hostplant preferring hierarchy. Zool. Sci. 23:169–189.PubMedCrossRefGoogle Scholar
  17. Mercader, R. J., and Scriber, J. M. 2008. Divergence in the ovipositional behavior of the Papilio glaucus group. Insect Sci. 15:361–367.CrossRefGoogle Scholar
  18. Murakami, T., Honda, K., Nakayama, T., and Hayashi, N. 2003. Phytochemical-mediated differential acceptance of four rutaceous plants by a swallowtail butterfly, Papilio polytes (Lepidoptera: Papilionidae). Appl. Entomol. Zool. 38:37–43.CrossRefGoogle Scholar
  19. Nakayama, T., Honda, K., and Hayashi, N. 2002. Chemical mediation of differential oviposition and larval survival on rutaceous plants in a swallowtail butterfly, Papilio polytes. Entomol. Exp. Appl. 105:35–42.CrossRefGoogle Scholar
  20. Nakayama, T., Honda, K., Ômura, H., and Hayashi, N. 2003. Oviposition stimulants for the tropical swallowtail butterfly, Papilio polytes, feeding on a rutaceous plant, Toddalia asiatica. J. Chem. Ecol. 29:1621–1634.PubMedCrossRefGoogle Scholar
  21. Nishida, R., Ohsugi, T., Kokubo, S., and Fukami, H. 1987. Oviposition stimulants of a Citrus-feeding swallowtail butterfly, Papilio xuthus L. Experientia 43: 342–344.CrossRefGoogle Scholar
  22. Nishida, R., Ohsugi, T., Fukami, H., and Nakajima, S. 1990. Oviposition deterrent of a Rutaceae-feeding swallowtail butterfly, Papilio xuthus, from a non-host rutaceous plant, Orixa japonica. Agric. Biol. Chem. 54:1265–1270.Google Scholar
  23. Ohsugi, T., Nishida, R., and Fukami, H. 1985. Oviposition stimulants of Papilio xuthus, a Citrus-feeding swallowtail butterfly. Agric. Biol. Chem. 49:1897–1900.Google Scholar
  24. Qiu, Y.-T., Van Loon, J. J. A., and Roessingh, P. 1998. Chemoreception of oviposition inhibiting terpenoids in the diamondback moth Plutella xylostella. Entomol. Exp. Appl. 87:143–155.CrossRefGoogle Scholar
  25. Renwick, J. A. A., and Chew, F. S. 1994. Oviposition behavior in Lepidoptera. Annu. Rev. Entomol. 39:377–400.CrossRefGoogle Scholar
  26. Ribeiro, A. B., Abdelnur, P. V., Garcia, C. F., Belini, A., Severino, V. G. P., Silva, M. F. das G. F. da, Fernandes, J. B., Vieira, P. C., De Carvalho, S. A., De Souza, A. A., and Machado, M. A. 2008. Chemical characterization of Citrus sinensis grafted on C. limonia and the effect of some isolated compounds on the growth of Xylella fastidiosa. J. Agric. Food Chem. 56:7815–7822.Google Scholar
  27. Roessingh, P., Städler, E., Shöni, R., and Feeny, P. 1991. Tarsal contact chemoreceptors of the black swallowtail butterfly Papilio polyxenes: responses to phytochemicals from host- and non-host plants. Physiol. Entomol. 16: 485–495.CrossRefGoogle Scholar
  28. Ryan, M. F. 2002. Insect Chemoreception Fundamental and Applied. Kluwer Academic Publishers, Dordrecht.Google Scholar
  29. Schoonhoven, L. M., and Fu-Shun, Y. 1989. Interference with normal chemoreceptor activity by some sesquiterpenoid antifeedants in an herbivorous insect Pieris brassicae. J. Insect Physiol. 35:725–728.CrossRefGoogle Scholar
  30. Schoonhoven, L. M., Van Loon, J.A.A., and Dicke, M. 2005. Insect-Plant Biology, 2nd Edition. Oxford University Press, Oxford, UK.Google Scholar
  31. Scriber, J. M. 1995. Overview of swallowtail butterflies: Taxonomic and distributional latitude, pp. 3–8, in J. M. Scriber, Y. Tsubaki and R. C. Lederhouse (eds.). Swallowtail Butterflies: Their Ecology and Evolutionary Biology. Scientific Publ., Gainesville.Google Scholar
  32. Scriber, J. M., Larsen, M. L., and Zalucki, M. P. 2007. Papilio aegeus Donovan (Lepidoptera: Papilionidae) host plant range evaluated experimentally on ancient angiosperms. Aust. J. Entomol. 46:65–74.CrossRefGoogle Scholar
  33. Scriber, J. M., Larsen, M. L., Allen, G. R., Walker, P. W., and Zalucki, M. P. 2008. Interactions between Papilionidae and ancient Australian angiosperms: evolutionary specialization or ecological monophagy? Entomol. Exp. Appl. 128:230–239.CrossRefGoogle Scholar
  34. Städler, E., Renwick, J. A. A., Radke, C. D., and Sachdev-Gupta, K. 1995. Tarsal contact chemoreceptor responses to glucosinolates and cardenolides mediating oviposition in Pieris rapae. Physiol. Entomol. 20:175–187.CrossRefGoogle Scholar
  35. Thompson, J. N., Wehling, W., and Podolsky, R. 1990. Evolutionary genetics of host use in swallowtail butterflies. Nature, 344: 148–150.CrossRefGoogle Scholar
  36. Tripoli, E., Guardia, M. L., Giammanco, S., Majo, D. D., and Giammanco, M. 2007. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 104:466–479.CrossRefGoogle Scholar
  37. Van Loon, J. J. A. 1996. Chemosensory basis of feeding and oviposition behaviour in herbivorous insects: a glance at the periphery. Entomol. Exp. Appl. 80:7–13.CrossRefGoogle Scholar
  38. Yagi, T., Sasaki, G.., and Takebe, H. 1999. Phylogeny of Japanese papilionid butterflies inferred from nucleotide sequences of the mitochondrial ND5 gene. J. Mol. Evol. 48:42–48.PubMedCrossRefGoogle Scholar
  39. Zakharov, E. V., Caterino, M. S., and Sperling, F. A. 2004. Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae). Syst. Biol. 53:193–215.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Keiichi Honda
    • 1
  • Hisashi Ômura
    • 1
  • Mamoru Chachin
    • 1
  • Seiji Kawano
    • 1
  • Takashi A. Inoue
    • 2
  1. 1.Department of Biofunctional Science and Technology, Graduate School of Biosphere ScienceHiroshima UniversityHigashihiroshimaJapan
  2. 2.Japanese National Institute of Agrobiological SciencesTsukubaJapan

Personalised recommendations