Journal of Chemical Ecology

, Volume 37, Issue 4, pp 387–397 | Cite as

Identification and Field Evaluation of Attractants for the Cranberry Weevil, Anthonomus musculus Say

  • Zsofia Szendrei
  • Anne Averill
  • Hans Alborn
  • Cesar Rodriguez-Saona


Studies were conducted to develop an attractant for the cranberry weevil, Anthonomus musculus, a pest of blueberry and cranberry flower buds and flowers in the northeastern United States. In previous studies, we showed that cinnamyl alcohol, the most abundant blueberry floral volatile, and the green leaf volatiles (Z)-3-hexenyl acetate and hexyl acetate, emitted from both flowers and flower buds, elicit strong antennal responses from A. musculus. Here, we found that cinnamyl alcohol did not increase capture of A. musculus adults on yellow sticky traps compared with unbaited controls; however, weevils were highly attracted to traps baited with the Anthonomus eugenii Cano aggregation pheromone, indicating that these congeners share common pheromone components. To identify the A. musculus aggregation pheromone, headspace volatiles were collected from adults feeding on blueberry or cranberry flower buds and analyzed by gas chromatography-mass spectrometry. Three male-specific compounds were identified: (Z)-2-(3,3-dimethyl-cyclohexylidene) ethanol (Z grandlure II); (Z)-(3,3-dimethylcyclohexylidene) acetaldehyde (grandlure III); and (E)-(3,3- dimethylcyclohexylidene) acetaldehyde (grandlure IV). A fourth component, (E)-3,7-dimethyl-2,6-octadien-1-ol (geraniol), was emitted in similar quantities by males and females. The emission rates of these volatiles were about 2.8, 1.8, 1.3, and 0.9 ng/adult/d, respectively. Field experiments in highbush blueberry (New Jersey) and cranberry (Massachusetts) examined the attraction of A. musculus to traps baited with the male-produced compounds and geraniol presented alone and combined with (Z)-3-hexenyl acetate and hexyl acetate, and to traps baited with the pheromones of A. eugenii and A. grandis. In both states and crops, traps baited with the A. musculus male-produced compounds attracted the highest number of adults. Addition of the green leaf volatiles did not affect A. musculus attraction to its pheromone but skewed the sex ratio of the captured adults towards females. Although the role of plant volatiles in host-plant location by A. musculus is still unclear, our studies provide the first identification of the primary A. musculus aggregation pheromone components that can be used to monitor this pest in blueberry and cranberry pest management programs.

Key Words

Attractant Blueberries Coleoptera Cranberries Curculionidae Gas chromatography-Mass spectrometry (GC-MS) Grandlure Host-plant volatiles Monitoring Pheromone Semiochemical 



Thanks to Vera Roth-Kyryczenko, Elizabeth Bender, Marty Sylvia, and Judson Parker for field assistance and to Robert Holdcraft for help with illustrations and tables. Many thanks go to the MA cranberry and NJ blueberry growers who provided field sites. This project was funded by a USDA Northeast IPM Competitive grant (No. 2007-34103-18055 to C. R-S. and A.A.).


  1. Addesso, K. M. and McAuslane, H. J. 2009. Pepper weevil attraction to volatiles from host and nonhost plants. Environ. Entomol. 38:216–224.PubMedCrossRefGoogle Scholar
  2. Averill, A. L. and Sylvia, M. M. 1998. Cranberry Insects of the Northeast: A Guide to Identification, Biology, and Management. University of Massachusetts, Amherst, Cranberry Exp. Station Publication, 112 pp.Google Scholar
  3. Bichao, H., Borg-Karlson, A. -K., Araujo, J., and Mustaparta, H. 2005. Five types of olfactory receptor neurons in the strawberry blossom weevil Anthonomus rubi: selective responses to inducible host-plat volatiles. Chem. Senses 30:153–170.PubMedCrossRefGoogle Scholar
  4. BOCH, R. 1962. Identification of geraniol as the active component in the Nassanoff pheromone of the honey bee. Nature 194:704–706.Google Scholar
  5. BORDEN, J. H., CHONG, L. J., SAVOIE, A., and WILSON, I. M. 1997. Responses to green leaf volatiles in two biogeoclimatic zomes by striped ambrosia beetle, Trypodendron lineatum. J. Chem. Ecol. 23:2379–2491.Google Scholar
  6. Borror, D. J., TriPlehorn, C. A., and Johnson, N. F. 1989. An Introduction to the Study of Insects. 6th Edition. Saunders College Publishing, Philadelphia, PA, USA.Google Scholar
  7. Budenberg, W. J., Ndiege, I. O., Karago, F. W., and Hansson, B. S. 1993. Behavioral and electrophysiological responses of the banana weevil Cosmopolites sordidus to host plant volatiles. J. Chem. Ecol. 19:267–279.CrossRefGoogle Scholar
  8. CHA, D. H., NOJIMA, S., HSELER, S. P., ZHANG, A., LINN, C. E. Jr, ROELOFS, W. L., and LOEB, G. M. 2008. Identification and field evaluation of grape shoot volatiles attractive to female grape berry moth (Paralobesia viteana). J. Chem. Ecol. 34:1180–1189.Google Scholar
  9. CHANG, J. F., BENEDICT, J. H., PAYNE, T. L., CAMP, B. J., and VINSON, S. B. 1989. Collection of pheromone from atmosphere surrounding boll weevils, Anthonomus grandis. J. Chem. Ecol. 15:767–777.Google Scholar
  10. Dickens, J. C., Jang, E. B., Light, D. M., and ALFORD, A. R. 1990. Enhancement of insect pheromone responses by green leaf volatiles. Naturwissenschaften 77:29–31.Google Scholar
  11. DICKENS, J. C. 1990. Specialized receptor neurons for pheromones and host plant odors in the boll weevil Anthonomus grandis Boh. (Coleoptera: Curculionidae). Chem. Senses 15:311–331.Google Scholar
  12. Dickens, J. C. 1989. Green leaf volatiles enhance aggregation pheromone of boll weevil, Anthonomus grandis. Entomol. Exp. Appl. 52:191–203.CrossRefGoogle Scholar
  13. DOEHLERT, C. A., and TOMLINSON, W .E. Jr. 1947. Blossom weevil on cultivated blueberries. New Jersey Agricultural Experimental Station, Circular 504, 8 pp.Google Scholar
  14. Eller, F. J., Bartelt, R. J., Shasha, B. S., Schuster, D. J., Riley, D. G., Stansly, P. A., Mueller, T. F., Shuler, K., Johnson, B., Davis, J. H., and Sutherland, C. A. 1994. Aggregation pheromone for the pepper weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae): Identification and field activity. J. Chem. Ecol. 20:1537–1555.CrossRefGoogle Scholar
  15. HAN, B. and CHEN, Z. 2002. Behavioral and electrophysiological responses of natural enemies to synomones from tea shoots and kairomones from tea aphids, Toxoptera aurantii. J. Chem. Ecol. 28:2203–2219.Google Scholar
  16. Hedin, P. A., Dollar, D. A., Collins, J. K., Dubois, J. G., Mulder, P. G., Hedger, G. H., Smith, M. W., and Eikenbary, R. D. 1997. Identification of male pecan weevil pheromone. J. Chem. Ecol. 23:965–977.CrossRefGoogle Scholar
  17. Innocenzi, P. J., Hall, D. R., and Cross, J. V. 2001. Components of male aggregation pheromone of strawberry blossom weevil, Anthonomus rubi Herbst. (Coleoptera: Curculionidae). J. Chem. Ecol. 27:1203–1218.PubMedCrossRefGoogle Scholar
  18. Kalinova, B., Stransky, K., Harmatha, J., Ctvrtecka, R., and Zdarek, J. 2000. Can chemical cues from blossom buds influence cultivar preference in the apple blossom weevil (Anthonomus pomorum)? Entomol. Exp. Appl. 95:47–52.Google Scholar
  19. KNIGHT, A.L. and LIGHT, M. 2005. Factors affecting the differential capture of male and female codling moth (Lepidoptera: Tortricidae) in traps baited with ethyl (E Z)-2, 4-decadienoate. Env. Entomol. 34:1161–1169.Google Scholar
  20. Lacroix, D. S. 1926. Life history and control of cranberry weevil Anthonomus musculus (Coleoptera: Curculionidae). Econ. Entomol. 19:819–827.Google Scholar
  21. LEAL, W. S., ONO, M., HASEGAWA, M., and SAWADA, M. 1994. Kairomone from dandelion, Taraxacum officinale, attractant for scarab beetle Anomala octiescostata. J. Chem. Ecol. 20:1697–1704.Google Scholar
  22. Long, B. B. and Averill, A. L. 2003. Compensatory response of cranberry to simulated damage by cranberry weevil (Anthonomus musculus Say) (Coleoptera: Curculionidae). J. Econ. Entomol. 96:407–412.PubMedCrossRefGoogle Scholar
  23. Marucci, P. E. 1966. Insects and their control, pp. 199–235, in P. Eck and N. F. Childers (eds.). Blueberry Culture. Rutgers University Press, New Brunswick, NJ.Google Scholar
  24. McKibben, G. H., Smith, J. W., and McGovern, W. L. 1990. Design of an attract-and-kill device for the boll weevil (Coleoptera: Curculionidae). J. Entomol. Sci. 25:581–586.Google Scholar
  25. Mechaber, W. L. 1992. Ecology of Anthonomus musculus: Hostplant finding and oviposition by cranberry weevil. Ph.D. dissertation. Tufts University, Medford, MA.Google Scholar
  26. PICKETT, J. A., WILLIAMS, I. H., MARTIN, A.P. and SMITH, M. C. 1980. Nasonov pheromone of the honey bee, Apis mellifera L. (Hymenoptera: Apidae) Part I. Chemical Characterization. J. Chem. Ecol. 6:425–434.Google Scholar
  27. QUALLS, W. A., and XUE, R. -D. 2009. Field evaluation of three botanical repellents against Psorophra ferox, Aedes atlanticus, and Aedes mitchellae. J. Am. Mosq. Control Assoc. 25:379–381.Google Scholar
  28. REDDY, G. V. P. and GUERRERO, A. 2000. Behavioral responses of the diamondback moth, Plutella xyllostella to green leaf volatiles of Brassica oleracea subsp. capitata. J. Agric. Food Chem. 48:6025–6029.Google Scholar
  29. Reddy, G. V. P. and Guerrero, A. 2004. Interactions of insect pheromones and plant semiochemicals. Trends Plant Sci. 9:253–261.PubMedCrossRefGoogle Scholar
  30. Schiestl, F. P. 2010. The evolution of floral scent and insect chemical communication. Ecology Letters 13:643–656.PubMedCrossRefGoogle Scholar
  31. SCHRÖDER, R. and HILKER, M. 2008. The relevance of background odor in resource location by insects: A behavioral approach. BioScience 58:308–316.Google Scholar
  32. Szendrei, Z. and Rodriguez-Saona, C. 2010. A meta-analysis of behavioral manipulation of insect pests with plant volatiles. Entomol. Exp. Appl. 134:201–210.CrossRefGoogle Scholar
  33. Szendrei, Z., Malo, E., Stelinski, L., and Rodriguez-Saona, C. 2009. Response of cranberry weevil (Anthonomus musculus Say, Coleoptera: Curculionidae) to host plant volatiles. Environ. Entomol. 38:861–869.PubMedCrossRefGoogle Scholar
  34. THOMPSON, A. C. and MITLIN, N. 1979. Biosynthesis of the sex pheromone of the male boll weevil from monoterpene precursors. Insect Biochem. 9:293–294.Google Scholar
  35. Tinzaara, W., Gold, C. S., Dicke, M., Van Huis, A., and Ragama, P. 2007. Host plant odours enhance the response of adult banana weevil to the synthetic aggregation pheromone Cosmolure. Int. J. Pest Manag. 53:127–137.CrossRefGoogle Scholar
  36. Tumlinson, J. H., Hardee, D. D., Gueldner, R. C., Thompson, A. C., Hedin, P. A., and Minyard, J. P. 1969. Sex pheromones produced by male boll weevil: isolation, identification, and synthesis. Science 166:1010–1012.PubMedCrossRefGoogle Scholar
  37. Tumlinson, J. H., Gueldner, R. C., Hardee, D. D., Thompson, A. C., Hedin, P. A., and Minyard, J. P. 1970. The boll weevil sex attractant, pp. 41–59, in M. Beroza (ed.). Chemicals Controlling Insect Behavior. Academic Press, New York.Google Scholar
  38. Van Tol, R. W. H. M. and Visser, J. H. 2002. Olfactory antennal responses of the vine weevil Otiorhynchus sulcatus to plant volatiles. Entomol. Exp. Appl. 102:49–64.CrossRefGoogle Scholar
  39. Visser, J. H. 1986. Host odor perception in phytophagous insects. Annu. Rev. Entomol. 31:121–144.CrossRefGoogle Scholar
  40. Wibe, A., Borg-Karlson, A. -K., Norin, T., and Mustaparta, H. 1997. Identification of plant volatiles activating single receptor neurons in the pine weevil (Hylobius abietis). J. Comp. Physiol. A 180:585–595.CrossRefGoogle Scholar
  41. WILLIAMS, I. H., PICKETT, J. A., and MARTIN, A. P. 1981. Attraction of honey bees to flowering plants by using synthetic Nasonov pheromone. Entomol. Exp. Appl. 30:199–201.Google Scholar
  42. ZHANG, Q. -H., SCHLYTER, F., and ANDERSON, P. 1999. Green leaf volatiles interrupt pheromone response of spruce bark beetle, Ips typographus. J. Chem. Ecol. 25:2847–2861.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Zsofia Szendrei
    • 1
    • 2
  • Anne Averill
    • 3
  • Hans Alborn
    • 4
  • Cesar Rodriguez-Saona
    • 1
  1. 1.Department of EntomologyRutgers UniversityChatsworthUSA
  2. 2.Department of EntomologyMichigan State UniversityEast LansingUSA
  3. 3.Department of Plant, Soil and Insect SciencesUniversity of MassachusettsAmherstUSA
  4. 4.USDA, ARSCenter for Medical, Agricultural & Veterinary EntomologyGainesvilleUSA

Personalised recommendations