Skip to main content
Log in

Identification and Field Evaluation of Attractants for the Cranberry Weevil, Anthonomus musculus Say

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Studies were conducted to develop an attractant for the cranberry weevil, Anthonomus musculus, a pest of blueberry and cranberry flower buds and flowers in the northeastern United States. In previous studies, we showed that cinnamyl alcohol, the most abundant blueberry floral volatile, and the green leaf volatiles (Z)-3-hexenyl acetate and hexyl acetate, emitted from both flowers and flower buds, elicit strong antennal responses from A. musculus. Here, we found that cinnamyl alcohol did not increase capture of A. musculus adults on yellow sticky traps compared with unbaited controls; however, weevils were highly attracted to traps baited with the Anthonomus eugenii Cano aggregation pheromone, indicating that these congeners share common pheromone components. To identify the A. musculus aggregation pheromone, headspace volatiles were collected from adults feeding on blueberry or cranberry flower buds and analyzed by gas chromatography-mass spectrometry. Three male-specific compounds were identified: (Z)-2-(3,3-dimethyl-cyclohexylidene) ethanol (Z grandlure II); (Z)-(3,3-dimethylcyclohexylidene) acetaldehyde (grandlure III); and (E)-(3,3- dimethylcyclohexylidene) acetaldehyde (grandlure IV). A fourth component, (E)-3,7-dimethyl-2,6-octadien-1-ol (geraniol), was emitted in similar quantities by males and females. The emission rates of these volatiles were about 2.8, 1.8, 1.3, and 0.9 ng/adult/d, respectively. Field experiments in highbush blueberry (New Jersey) and cranberry (Massachusetts) examined the attraction of A. musculus to traps baited with the male-produced compounds and geraniol presented alone and combined with (Z)-3-hexenyl acetate and hexyl acetate, and to traps baited with the pheromones of A. eugenii and A. grandis. In both states and crops, traps baited with the A. musculus male-produced compounds attracted the highest number of adults. Addition of the green leaf volatiles did not affect A. musculus attraction to its pheromone but skewed the sex ratio of the captured adults towards females. Although the role of plant volatiles in host-plant location by A. musculus is still unclear, our studies provide the first identification of the primary A. musculus aggregation pheromone components that can be used to monitor this pest in blueberry and cranberry pest management programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Addesso, K. M. and McAuslane, H. J. 2009. Pepper weevil attraction to volatiles from host and nonhost plants. Environ. Entomol. 38:216–224.

    Article  PubMed  Google Scholar 

  • Averill, A. L. and Sylvia, M. M. 1998. Cranberry Insects of the Northeast: A Guide to Identification, Biology, and Management. University of Massachusetts, Amherst, Cranberry Exp. Station Publication, 112 pp.

  • Bichao, H., Borg-Karlson, A. -K., Araujo, J., and Mustaparta, H. 2005. Five types of olfactory receptor neurons in the strawberry blossom weevil Anthonomus rubi: selective responses to inducible host-plat volatiles. Chem. Senses 30:153–170.

    Article  PubMed  CAS  Google Scholar 

  • BOCH, R. 1962. Identification of geraniol as the active component in the Nassanoff pheromone of the honey bee. Nature 194:704–706.

  • BORDEN, J. H., CHONG, L. J., SAVOIE, A., and WILSON, I. M. 1997. Responses to green leaf volatiles in two biogeoclimatic zomes by striped ambrosia beetle, Trypodendron lineatum. J. Chem. Ecol. 23:2379–2491.

  • Borror, D. J., TriPlehorn, C. A., and Johnson, N. F. 1989. An Introduction to the Study of Insects. 6th Edition. Saunders College Publishing, Philadelphia, PA, USA.

    Google Scholar 

  • Budenberg, W. J., Ndiege, I. O., Karago, F. W., and Hansson, B. S. 1993. Behavioral and electrophysiological responses of the banana weevil Cosmopolites sordidus to host plant volatiles. J. Chem. Ecol. 19:267–279.

    Article  CAS  Google Scholar 

  • CHA, D. H., NOJIMA, S., HSELER, S. P., ZHANG, A., LINN, C. E. Jr, ROELOFS, W. L., and LOEB, G. M. 2008. Identification and field evaluation of grape shoot volatiles attractive to female grape berry moth (Paralobesia viteana). J. Chem. Ecol. 34:1180–1189.

  • CHANG, J. F., BENEDICT, J. H., PAYNE, T. L., CAMP, B. J., and VINSON, S. B. 1989. Collection of pheromone from atmosphere surrounding boll weevils, Anthonomus grandis. J. Chem. Ecol. 15:767–777.

  • Dickens, J. C., Jang, E. B., Light, D. M., and ALFORD, A. R. 1990. Enhancement of insect pheromone responses by green leaf volatiles. Naturwissenschaften 77:29–31.

  • DICKENS, J. C. 1990. Specialized receptor neurons for pheromones and host plant odors in the boll weevil Anthonomus grandis Boh. (Coleoptera: Curculionidae). Chem. Senses 15:311–331.

    Google Scholar 

  • Dickens, J. C. 1989. Green leaf volatiles enhance aggregation pheromone of boll weevil, Anthonomus grandis. Entomol. Exp. Appl. 52:191–203.

    Article  CAS  Google Scholar 

  • DOEHLERT, C. A., and TOMLINSON, W .E. Jr. 1947. Blossom weevil on cultivated blueberries. New Jersey Agricultural Experimental Station, Circular 504, 8 pp.

  • Eller, F. J., Bartelt, R. J., Shasha, B. S., Schuster, D. J., Riley, D. G., Stansly, P. A., Mueller, T. F., Shuler, K., Johnson, B., Davis, J. H., and Sutherland, C. A. 1994. Aggregation pheromone for the pepper weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae): Identification and field activity. J. Chem. Ecol. 20:1537–1555.

    Article  CAS  Google Scholar 

  • HAN, B. and CHEN, Z. 2002. Behavioral and electrophysiological responses of natural enemies to synomones from tea shoots and kairomones from tea aphids, Toxoptera aurantii. J. Chem. Ecol. 28:2203–2219.

  • Hedin, P. A., Dollar, D. A., Collins, J. K., Dubois, J. G., Mulder, P. G., Hedger, G. H., Smith, M. W., and Eikenbary, R. D. 1997. Identification of male pecan weevil pheromone. J. Chem. Ecol. 23:965–977.

    Article  CAS  Google Scholar 

  • Innocenzi, P. J., Hall, D. R., and Cross, J. V. 2001. Components of male aggregation pheromone of strawberry blossom weevil, Anthonomus rubi Herbst. (Coleoptera: Curculionidae). J. Chem. Ecol. 27:1203–1218.

    Article  PubMed  CAS  Google Scholar 

  • Kalinova, B., Stransky, K., Harmatha, J., Ctvrtecka, R., and Zdarek, J. 2000. Can chemical cues from blossom buds influence cultivar preference in the apple blossom weevil (Anthonomus pomorum)? Entomol. Exp. Appl. 95:47–52.

  • KNIGHT, A.L. and LIGHT, M. 2005. Factors affecting the differential capture of male and female codling moth (Lepidoptera: Tortricidae) in traps baited with ethyl (E Z)-2, 4-decadienoate. Env. Entomol. 34:1161–1169.

  • Lacroix, D. S. 1926. Life history and control of cranberry weevil Anthonomus musculus (Coleoptera: Curculionidae). Econ. Entomol. 19:819–827.

    Google Scholar 

  • LEAL, W. S., ONO, M., HASEGAWA, M., and SAWADA, M. 1994. Kairomone from dandelion, Taraxacum officinale, attractant for scarab beetle Anomala octiescostata. J. Chem. Ecol. 20:1697–1704.

  • Long, B. B. and Averill, A. L. 2003. Compensatory response of cranberry to simulated damage by cranberry weevil (Anthonomus musculus Say) (Coleoptera: Curculionidae). J. Econ. Entomol. 96:407–412.

    Article  PubMed  Google Scholar 

  • Marucci, P. E. 1966. Insects and their control, pp. 199–235, in P. Eck and N. F. Childers (eds.). Blueberry Culture. Rutgers University Press, New Brunswick, NJ.

    Google Scholar 

  • McKibben, G. H., Smith, J. W., and McGovern, W. L. 1990. Design of an attract-and-kill device for the boll weevil (Coleoptera: Curculionidae). J. Entomol. Sci. 25:581–586.

  • Mechaber, W. L. 1992. Ecology of Anthonomus musculus: Hostplant finding and oviposition by cranberry weevil. Ph.D. dissertation. Tufts University, Medford, MA.

  • PICKETT, J. A., WILLIAMS, I. H., MARTIN, A.P. and SMITH, M. C. 1980. Nasonov pheromone of the honey bee, Apis mellifera L. (Hymenoptera: Apidae) Part I. Chemical Characterization. J. Chem. Ecol. 6:425–434.

  • QUALLS, W. A., and XUE, R. -D. 2009. Field evaluation of three botanical repellents against Psorophra ferox, Aedes atlanticus, and Aedes mitchellae. J. Am. Mosq. Control Assoc. 25:379–381.

  • REDDY, G. V. P. and GUERRERO, A. 2000. Behavioral responses of the diamondback moth, Plutella xyllostella to green leaf volatiles of Brassica oleracea subsp. capitata. J. Agric. Food Chem. 48:6025–6029.

  • Reddy, G. V. P. and Guerrero, A. 2004. Interactions of insect pheromones and plant semiochemicals. Trends Plant Sci. 9:253–261.

    Article  PubMed  CAS  Google Scholar 

  • Schiestl, F. P. 2010. The evolution of floral scent and insect chemical communication. Ecology Letters 13:643–656.

    Article  PubMed  Google Scholar 

  • SCHRÖDER, R. and HILKER, M. 2008. The relevance of background odor in resource location by insects: A behavioral approach. BioScience 58:308–316.

  • Szendrei, Z. and Rodriguez-Saona, C. 2010. A meta-analysis of behavioral manipulation of insect pests with plant volatiles. Entomol. Exp. Appl. 134:201–210.

    Article  Google Scholar 

  • Szendrei, Z., Malo, E., Stelinski, L., and Rodriguez-Saona, C. 2009. Response of cranberry weevil (Anthonomus musculus Say, Coleoptera: Curculionidae) to host plant volatiles. Environ. Entomol. 38:861–869.

    Article  PubMed  CAS  Google Scholar 

  • THOMPSON, A. C. and MITLIN, N. 1979. Biosynthesis of the sex pheromone of the male boll weevil from monoterpene precursors. Insect Biochem. 9:293–294.

  • Tinzaara, W., Gold, C. S., Dicke, M., Van Huis, A., and Ragama, P. 2007. Host plant odours enhance the response of adult banana weevil to the synthetic aggregation pheromone Cosmolure. Int. J. Pest Manag. 53:127–137.

    Article  CAS  Google Scholar 

  • Tumlinson, J. H., Hardee, D. D., Gueldner, R. C., Thompson, A. C., Hedin, P. A., and Minyard, J. P. 1969. Sex pheromones produced by male boll weevil: isolation, identification, and synthesis. Science 166:1010–1012.

    Article  PubMed  CAS  Google Scholar 

  • Tumlinson, J. H., Gueldner, R. C., Hardee, D. D., Thompson, A. C., Hedin, P. A., and Minyard, J. P. 1970. The boll weevil sex attractant, pp. 41–59, in M. Beroza (ed.). Chemicals Controlling Insect Behavior. Academic Press, New York.

    Google Scholar 

  • Van Tol, R. W. H. M. and Visser, J. H. 2002. Olfactory antennal responses of the vine weevil Otiorhynchus sulcatus to plant volatiles. Entomol. Exp. Appl. 102:49–64.

    Article  Google Scholar 

  • Visser, J. H. 1986. Host odor perception in phytophagous insects. Annu. Rev. Entomol. 31:121–144.

    Article  Google Scholar 

  • Wibe, A., Borg-Karlson, A. -K., Norin, T., and Mustaparta, H. 1997. Identification of plant volatiles activating single receptor neurons in the pine weevil (Hylobius abietis). J. Comp. Physiol. A 180:585–595.

    Article  CAS  Google Scholar 

  • WILLIAMS, I. H., PICKETT, J. A., and MARTIN, A. P. 1981. Attraction of honey bees to flowering plants by using synthetic Nasonov pheromone. Entomol. Exp. Appl. 30:199–201.

  • ZHANG, Q. -H., SCHLYTER, F., and ANDERSON, P. 1999. Green leaf volatiles interrupt pheromone response of spruce bark beetle, Ips typographus. J. Chem. Ecol. 25:2847–2861.

Download references

Acknowledgments

Thanks to Vera Roth-Kyryczenko, Elizabeth Bender, Marty Sylvia, and Judson Parker for field assistance and to Robert Holdcraft for help with illustrations and tables. Many thanks go to the MA cranberry and NJ blueberry growers who provided field sites. This project was funded by a USDA Northeast IPM Competitive grant (No. 2007-34103-18055 to C. R-S. and A.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsofia Szendrei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szendrei, Z., Averill, A., Alborn, H. et al. Identification and Field Evaluation of Attractants for the Cranberry Weevil, Anthonomus musculus Say. J Chem Ecol 37, 387–397 (2011). https://doi.org/10.1007/s10886-011-9938-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-011-9938-z

Key Words

Navigation