Journal of Chemical Ecology

, Volume 37, Issue 12, pp 1285–1293 | Cite as

Inhibition of Snowshoe Hare Succinate Dehydrogenase Activity as a Mechanism of Deterrence for Papyriferic Acid in Birch

  • Jennifer Sorensen Forbey
  • Xinzhu Pu
  • Dong Xu
  • Knut Kielland
  • John Bryant


The plant secondary metabolite papyriferic acid (PA) deters browsing by snowshoe hares (Lepus americanus) on the juvenile developmental stage of the Alaska paper birch (Betula neoalaskana). However, the physiological mechanism that reduces browsing remains unknown. We used pharmacological assays and molecular modeling to test the hypothesis that inhibition of succinate dehydrogenase (SDH) is a mode of action (MOA) of toxicity of PA in snowshoe hares. We tested this hypothesis by measuring the effect of PA on the activity of SDH in liver mitochondria isolated from wild hares. In addition, we used molecular modeling to determine the specific binding site of PA on SDH. We found that PA inhibits SDH from hares by an uncompetitive mechanism in a dose-dependent manner. Molecular modeling suggests that inhibition of SDH is a result of binding of PA at the ubiquinone binding sites in complex II. Our results provide a MOA for toxicity that may be responsible for the concentration-dependent anti-feedant effects of PA. We propose that snowshoe hares reduce the dose-dependent toxic consequences of PA by relying on efflux transporters and metabolizing enzymes that lower systemic exposure to dietary PA.

Key Words

Chemical defense Enzyme inhibition Mode of action Papyriferic acid Succinate dehydrogenase Snowshoe hare 



We thank Thomas Allen and Dr. Ethan Ellsworth for assistance with the collection of hares and tissues and the field. We thank Dr. Thomas Clausen, Department of Chemistry and Biochemistry, University of Alaska, Fairbanks, for his donation of papyriferic acid. We are grateful to Dr. Stuart McLean for initiating ideas for this study, his assistance in developing assays, and critique of the manuscript. We thank Dr. Rajesh Nagarajan, Department of Chemistry, Boise State University, for assistance with interpretation of enzyme kinetic data. We appreciate the comments from three anonymous reviewers for improving the manuscript. Research was supported by Boise State University, the Bonanza Creek LTER program (NSF-DEB-0423442), and the US Forest Service (PNW01-JV11226952-231).

Supplementary material

10886_2011_39_MOESM1_ESM.docx (23 kb)
Supplementary Material 1 (DOCX 22.8 kb)
10886_2011_39_MOESM2_ESM.docx (67 kb)
Supplementary Material 2 (DOCX 66.5 kb)
10886_2011_39_MOESM3_ESM.docx (66 kb)
Supplementary Material 3 (DOCX 66.2 kb)
10886_2011_39_MOESM4_ESM.docx (54 kb)
Supplementary Material 4 (DOCX 53.9 kb)


  1. Baudry, J., Li, W. M., Pan, L. P., Berenbaum, M. R., and Schuler, M. A. 2003. Molecular docking of substrates and inhibitors in the catalytic site of CYP6B1, an insect cytochrome P450 monooxygenase. Protein Eng. 16:577–587.PubMedCrossRefGoogle Scholar
  2. Boyle, R. R., McLean, S., Brandon, S., and Wiggins, N. 2005. Rapid absorption of dietary 1,8-cineole results in critical blood concentration of cineole and immediate cessation of eating in the common brushtail possum (Trichosurus vulpecula). J. Chem. Ecol. 31:2775–2790.PubMedCrossRefGoogle Scholar
  3. Bryant, J. P. 1981. Phytochemical deterrence of snowshoe hare browsing by adventitious shoots of 4 Alaskan trees. Science 213:889–890.PubMedCrossRefGoogle Scholar
  4. Bryant, J. P. and Kuropat, P. J. 1980. Selection of winter forage by sub-arctic browsing vertebrates—the role of plant chemistry. Annu. Rev. Ecol. Evol. Syst. 11:261–285.CrossRefGoogle Scholar
  5. Bryant, J. P., Swihart, R. K., Reichardt, P. B., and Newton, L. 1994. Biogeography of woody plant-chemical defense against snowshoe hare browsing—comparison of Alaska and eastern North America. Oikos 70:385–395.CrossRefGoogle Scholar
  6. Bryant, J. P., Clausen, T. P., Swihart, R. K., Landhausser, S. M., Stevens, M. T., Hawkins, C. D. B., Carriere, S., Kirilenko, A. P., Veitch, A. M., Popko, R. A., Cleland, D. T., Williams, J. H., Jakubas, W. J., Carlson, M. R., Bodony, K. L., Cebrian, M., Paragi, T. F., Picone, P. M., Moore, J. E., Packee, E. C., and Malone, T. 2009. Fire drives transcontinental variation in tree birch defense against browsing by snowshoe hares. Am. Nat. 174:13–23.PubMedCrossRefGoogle Scholar
  7. Clausen, T. P., Reichardt, P. B., and Bryant, J. P. 1986. Pinosylvin and pinosylvin methyl-ether as feeding deterrents in green alder. J. Chem. Ecol. 12:2117–2131.CrossRefGoogle Scholar
  8. Dahl, S. G., Aarons, L., Gundert-Remy, U., Karlsson, M. O., Schneider, Y. J., Steimer, J. L., and Troconiz, I. F. 2010. Incorporating physiological and biochemical mechanisms into pharmacokinetic-pharmacodynamic models: A conceptual framework. Basic Clin. Pharmacol. Toxicol. 106:2–12.PubMedGoogle Scholar
  9. Danhof, M., de JJongh, J., de Lange, E. C. M., Della Pasqua, O., Ploeger, B. A., and Voskuyl, R. A. 2007. Mechanism-based pharmacokinetic-pharmacodynamic modeling: Biophase distribution, receptor theory, and dynamical systems analysis. Annu. Rev. Pharmacol. Toxicol. 47:357–400.PubMedCrossRefGoogle Scholar
  10. Dearing, M. D., Foley, W. J., and McLean, S. 2005. The influence of plant secondary metabolites on the nutritional ecology of herbivorous terrestrial vertebrates. Annu. Rev. Ecol. Evol. Syst. 36:169–189.CrossRefGoogle Scholar
  11. Dong, L. F., Low, P., Dyason, J. C., Wang, X. F., Prochazka, L., Witting, P. K., Freeman, R., Swettenham, E., Valis, K., Liu, J., Zobalova, R., Turanek, J., Spitz, D. R., Domann, F. E., Scheffler, I. E., Ralph, S. J., and Neuzil, J. 2008. [alpha]-tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene:4324–4335.Google Scholar
  12. Dugle, J. R. 1966. A taxonomic study of western Canadian species in the genus Betula. Can. J. Bot. 44:929–1007.CrossRefGoogle Scholar
  13. Forbey, J. S. and Foley, W. J. 2009. Pharmecology: A pharmacological approach to understanding plant-herbivore interactions: An introduction to the symposium. Integr. Comp. Biol. 49:267–273.PubMedCrossRefGoogle Scholar
  14. Greene, J. G. and Greenamyre, J. T. 1995. Characterization of the excitotoxic potential of the reversible succinate-dehydrogenase inhibitor malonate. J. Neurochem. 64:430–436.PubMedCrossRefGoogle Scholar
  15. Humphrey, W., Dalke, A., and Schulten, K. 1996. Vmd: Visual molecular dynamics. J. Mol. Graph. 14:33–38.PubMedCrossRefGoogle Scholar
  16. Jia, J. B., Niemela, P., Rousi, M., and Harkonen, S. 1997. Selective browsing of moose (Alces alces) on birch (Betula pendula) clones. Scand. J. Forest Res. 12:33–40.CrossRefGoogle Scholar
  17. Jogia, M. K., Sinclair, A. R. E., and Andersen, R. J. 1989. An antifeedant in balsam poplar inhibits browsing by snowshoe hares. Oecologia 79:189–192.CrossRefGoogle Scholar
  18. Jones, R. T., Bakker, S. E., Stone, D., Shuttleworth, S. N., Boundy, S., McCart, C., Daborn, P. J., Ffrench-Constant, R. H., and van den Elsen, J. M. H. 2010. Homology modelling of drosophila cytochrome P450 enzymes associated with insecticide resistance. Pest Manag. Sci. 66:1106–1115.PubMedCrossRefGoogle Scholar
  19. Julkunen-Tiitto, R., Rousi, M., Bryant, J., Sorsa, S., Keinanen, M., and Sikanen, H. 1996. Chemical diversity of several Betulaceae species: Comparison of phenolics and terpenoids in northern birch stems. Trees-Struct. Funct. 11:16–22.CrossRefGoogle Scholar
  20. Kuijper, D. P. J., van Wieren, S. E., and Bakker, J. P. 2004. Digestive strategies in two sympatrically occurring lagomorphs. J. Zool. 264:171–178.CrossRefGoogle Scholar
  21. Lapinjoki, S. P., Elo, H. A., and Taipale, H. T. 1991. Development and structure of resin glands on tissues of Betula pendula Roth. during growth. New Phytol. 117:219–223.CrossRefGoogle Scholar
  22. Lawler, I. R., Foley, W. J., Pass, G. J., and Eschler, B. M. 1998. Administration of a 5HT3 receptor antagonist increases the intake of diets containing Eucalyptus secondary metabolites by marsupials. J. Comp. Physiol. B. Biochem. Syst. Environ. Physiol. 168:611–618.CrossRefGoogle Scholar
  23. Mao, W., Schuler, M. A., and Berenbaum, M. R. 2007. Cytochrome P450s in Papilio multicaudatus and the transition from oligophagy to polyphagy in the Papilionidae. Insect Mol. Biol. 16:481–490.PubMedCrossRefGoogle Scholar
  24. McLean, S. and Duncan, A. J. 2006. Pharmacological perspectives on the detoxification of plant secondary metabolites: Implications for ingestive behavior of herbivores. J. Chem. Ecol. 32:1213–1228.PubMedCrossRefGoogle Scholar
  25. McLean, S., Boyle, R. R., Brandon, S., Davies, N. W., and Sorensen, J. S. 2007. Pharmacokinetics of 1,8-cineole, a dietary toxin, in the brushtail possum (Trichosurus vulpecula): Significance for feeding. Xenobiotica 37:903–922.PubMedCrossRefGoogle Scholar
  26. McLean, S., Richards, S. M., Cover, S. L., Brandon, S., Davies, N. W., Bryant, J. P., and Clausen, T. P. 2009. Papyriferic acid, an antifeedant triterpene from birch trees, inhibits succinate dehydrogenase from liver mitochondria. J. Chem. Ecol. 35:1252–1261.PubMedCrossRefGoogle Scholar
  27. Megarbane, B., Aslani, A. A., Deye, N., and Baud, F. J. 2008. Pharmacokinetic/pharmacodynamic modeling of cardiac toxicity in human acute overdoses: Utility and limitations. Expert Opin. Drug Metab. Toxicol. 4:569–579.PubMedCrossRefGoogle Scholar
  28. Meyer, K., Hummel, J., and Clauss, M. 2010. The relationship between forage cell wall content and voluntary food intake in mammalian herbivores. Mammal Rev. 40:221–245.Google Scholar
  29. Mogi, T., Kawakami, T., Arai, H., Igarashi, Y., Matsushita, K., Mori, M., Shiomi, K., Omura, S., Harada, S., and Kita, K. 2009. Siccanin rediscovered as a species-selective succinate dehydrogenase inhibitor. J. Biochem. 146:383–387.PubMedCrossRefGoogle Scholar
  30. Moran, N. and Hamilton, W. D. 1980. Low nutritive quality as defense against herbivores. J. Theor. Biol. 86:247–254.CrossRefGoogle Scholar
  31. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., and Olson, A. J. 2009. Autodock4 and Autodocktools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30:2785–2791.PubMedCrossRefGoogle Scholar
  32. Pardee, A. B. and Potter, V. R. 1949. Malonate inhibition of oxidations in the Krebs tricarboxylic acid cycle. J. Biol. Chem. 178:241–250.PubMedGoogle Scholar
  33. Ploeger, B. A., van derGraaf, P. H., and Danhof, M. 2009. Incorporating receptor theory in mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling. Drug Metab. Pharmacokinet. 24:3–15.PubMedCrossRefGoogle Scholar
  34. Provenza, F. D. 1995. Postingestive feedback as an elementary determinant of food preference and intake in ruminants. J. Range Manag. 48:2–17.CrossRefGoogle Scholar
  35. Provenza, F. D., Ortegareyes, L., Scott, C. B., Lynch, J. J., and Burritt, E. A. 1994. Antiemetic drugs attenuate food aversions in sheep. J. Anim. Sci. 72:1989–1994.PubMedGoogle Scholar
  36. Pusenius, J., Prittinen, K., Heimonen, J., Koivunoro, K., Rousi, M., and Roininen, H. 2002. Choice of voles among genotypes of birch seedlings: Its relationship with seedling quality and preference of insects. Oecologia 130:426–432.CrossRefGoogle Scholar
  37. Raatikainen, O. J., Taipale, H. T., Pelttari, A., and Lapinjoki, S. P. 1992. An electron-microscope study of resin production and secretion by the glands of seedlings of Betula pendula Roth. New Phytol. 122:537–543.CrossRefGoogle Scholar
  38. Reichardt, P. B. 1981. Papyriferic acid—a triterpenoid from Alaskan paper birch. J. Org. Chem. 46:4576–4578.CrossRefGoogle Scholar
  39. Reichardt, P. B., Bryant, J. P., Clausen, T. P., and Wieland, G. D. 1984. Defense of winter-dormant Alaska paper birch against snowshoe hares. Oecologia 65:58–69.CrossRefGoogle Scholar
  40. Reichardt, P. B., Bryant, J. P., Mattes, B. R., Clausen, T. P., Chapin, F. S., and Meyer, M. 1990. Winter chemical defense of Alaskan balsam poplar against snowshoe hares. J. Chem. Ecol. 16:1941–1959.CrossRefGoogle Scholar
  41. Rosen, H., Rakita, R. M., Waltersdorph, A. M., and Klebanoff, S. J. 1987. Myeloperoxidase-mediated damage to the succinate oxidase system of Escherichia coli. Evidence for selective inactivation of the dehydrogenase component. J. Biol. Chem. 262:15004–15010.PubMedGoogle Scholar
  42. Rupasinghe, S., Baudry, J., and Schuler, M. A. 2003. Common active site architecture and binding strategy of four phenylpropanoid P450s from Arabidopsis thaliana as revealed by molecular modeling. Protein Eng. 16:721–731.PubMedCrossRefGoogle Scholar
  43. Rutter, J., Winge, D. R., and Schiffman, J. D. 2010. Succinate dehydrogenase—assembly, regulation and role in human disease. Mitochondrion 10:393–401.PubMedCrossRefGoogle Scholar
  44. Sinclair, A. R. E., Jogia, M. K., and Andersen, R. J. 1988a. Camphor from juvenile white spruce as an antifeedant for snowshoe hares. J. Chem. Ecol. 14:1505–1514.CrossRefGoogle Scholar
  45. Sinclair, A. R. E., Krebs, C. J., Smith, J. N. M., and Boutin, S. 1988b. Population biology of snowshoe hares. 3. Nutrition, plant secondary compounds and food limitation. J. Anim. Ecol. 57:787–806.CrossRefGoogle Scholar
  46. Sorensen, J. S. and Dearing, M. D. 2006. Efflux transporters as a novel herbivore countermechanism to plant chemical defenses. J. Chem. Ecol. 32:1181–1196.PubMedCrossRefGoogle Scholar
  47. Sorensen, J. S., Heward, E., and Dearing, M. D. 2005. Plant secondary metabolites alter the feeding patterns of a mammalian herbivore (Neotoma lepida). Oecologia 146:415–422.PubMedCrossRefGoogle Scholar
  48. Sorensen, J. S., Skopec, M. M., and Dearing, M. D. 2006. Application of pharmacological approaches to plant-mammal interactions. J. Chem. Ecol. 32:1229–1246.PubMedCrossRefGoogle Scholar
  49. Sotka, E. E., Forbey, J., Horn, M., Poore, A. G. B., Raubenheimer, D., and Whalen, K. E. 2009. The emerging role of pharmacology in understanding consumer-prey interactions in marine and freshwater systems. Integr. Comp. Biol. 49:291–313.PubMedCrossRefGoogle Scholar
  50. Stott, P. 2008. Comparisons of digestive function between the European hare (Lepus europaeus) and the European rabbit (Oryctolagus cuniculus): Mastication, gut passage, and digestibility. Mamm. Biol. 73:276–286.CrossRefGoogle Scholar
  51. Sun, F., Huo, X., Zhai, Y., Wang, A., Xu, J., Su, D., Bartlam, M., and Rao, Z. 2005. Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121:1043–1057.PubMedCrossRefGoogle Scholar
  52. Swihart, R. K. and Bryant, J. P. 2001. Importance of biogeography and ontogeny of woody plants in winter herbivory by mammals. J. Mammal. 82:1–21.CrossRefGoogle Scholar
  53. Taipale, H. T., Harmala, L., Rousi, M., and Lapinjoki, S. P. 1994. Histological and chemical comparison of triterpene and phenolic deterrent contents of juvenile shoots of Betula species. Trees-Struct. Funct. 8:232–236.Google Scholar
  54. Thompson, J. N. 2005. Coevolution: The geographic mosaic of coevolutionary arms races. Curr. Biol. 15:R992–R994.PubMedCrossRefGoogle Scholar
  55. Torregrossa, A. M. and Dearing, M. D. 2009. Nutritional toxicology of mammals: Regulated intake of plant secondary compounds. Funct. Ecol. 23:48–56.CrossRefGoogle Scholar
  56. Wallace, K. B. and Starkov, A. A. 2000. Mitochondrial targets of drug toxicity. Annu. Rev. Pharmacol. Toxicol. 40:353–388.PubMedCrossRefGoogle Scholar
  57. Wiggins, N. L., McArthur, C., McLean, S., and Boyle, R. 2003. Effects of two plant secondary metabolites, cineole and gallic acid, on nightly feeding patterns of the common brushtail possum. J. Chem. Ecol. 29:1447–1464.PubMedCrossRefGoogle Scholar
  58. Williams, D. E., Sinclair, A. R. E., and Andersen, R. J. 1992. Triterpene constituents of the dwarf birch, Betula glandulosa. Phytochemistry 31:2321–2324.CrossRefGoogle Scholar
  59. Wojtovich, A. P. and Brookes, P. S. 2008. The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: Implications for ischemic preconditioning. Biochim. Biophys. Acta 1777:882–889.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jennifer Sorensen Forbey
    • 1
  • Xinzhu Pu
    • 1
  • Dong Xu
    • 2
  • Knut Kielland
    • 3
  • John Bryant
    • 3
  1. 1.Department of Biological SciencesBoise State UniversityBoiseUSA
  2. 2.Department of Chemistry and BiochemistryBoise State UniversityBoiseUSA
  3. 3.Institute of Arctic BiologyUniversity of AlaskaFairbanksUSA

Personalised recommendations