Journal of Chemical Ecology

, Volume 37, Issue 1, pp 18–28 | Cite as

Volatile Emissions from Alnus glutionosa Induced by Herbivory are Quantitatively Related to the Extent of Damage

  • Lucian Copolovici
  • Astrid Kännaste
  • Triinu Remmel
  • Vivian Vislap
  • Ülo Niinemets


Plant volatile organic compounds (VOCs) elicited in response to herbivory serve as cues for parasitic and predatory insects. Knowledge about quantitative relationships between the extent of herbivore-induced damage and the quantities of VOCs released is scarce. We studied the kinetics of VOC-emissions from foliage of the deciduous tree Alnus glutinosa induced by feeding activity of larvae of the geometrid moth Cabera pusaria. Quantitative relationships between the intensity of stress and strength of plant response were determined. Intensity of biotic stress was characterized by herbivore numbers (0–8 larvae) and by the amount of leaf area eaten. The strength of plant response was characterized by monitoring (i) changes in photosynthesis, (ii) leaf ultrastructure, and (iii) plant volatiles. Net assimilation rate displayed compensatory responses in herbivore-damaged leaves compared with control leaves. This compensatory response was associated with an overall increase in chloroplast size. Feeding-induced emissions of products of the lipoxygenase pathway (LOX products; (E)-2-hexenal, (Z)-3-hexenol, 1-hexanol, and (Z)-3-hexenyl acetate) peaked at day 1 after larval feeding started, followed by an increase of emissions of ubiquitous monoterpenes peaking on days 2 and 3. The emission of the monoterpene (E)-β-ocimene and of the nerolidol-derived homoterpene 4,8-dimethyl-nona-1,3,7-triene (DMNT) peaked on day 3. Furthermore, the emission kinetics of the sesquiterpene (E,E)-α-farnesene tended to be biphasic with peaks on days 2 and 4 after start of larval feeding. Emission rates of the induced LOX products, of (E)-β-ocimene and (E,E)-α-farnesene were positively correlated with the number of larvae feeding. In contrast, the emission of DMNT was independent of the number of feeders. These data show quantitative relationships between the strength of herbivory and the emissions of LOX products and most of the terpenoids elicited in response to feeding. Thus, herbivory-elicited LOX products and terpenoid emissions may convey both quantitative and qualitative signals to antagonists of the herbivores. In contrast, our data suggest that the feeding-induced homoterpene DMNT conveys the information “presence of herbivores” rather than information about the quantities of herbivores to predators and parasitoids.

Key Words

Biotic stress Green leaf volatiles Leaf ultrastructure Photosynthesis rate Volatile organic compounds 



We thank Prof. Jarmo Holopainen, University of Eastern Finland, Kuopio, Finland, for the 4,8-dimethyl-nona-1,3,7-triene (DMNT) standard. The Estonian Ministry of Science and Education (grants SF1090065s07 and SF0180122S08), the Estonian Science Foundation (post-doctoral grants JD101, MJD14 and grant 7645) and the European Commission through the European Regional Development Fund (Center of Excellence FIBIR) provided financial support for this research.


  1. Arimura, G., Ozawa, R., Shimoda, T., Nishioka, T., Boland, W., and Takabayashi, J. 2000. Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–515.CrossRefPubMedGoogle Scholar
  2. Arimura, G., Kost, C., and Boland, W. 2005. Herbivore-induced, indirect plant defences. BBA-Mol. Cell Biol. L. 1734:91–111.Google Scholar
  3. Arimura, G., Kopke, S., Kunert, M., Volpe, V., David, A., Brand, P., Dabrowska, P., Maffei, M. E., and Boland, W. 2008. Effects of feeding Spodoptera littoralis on lima bean leaves: IV. Diurnal and nocturnal damage differentially initiate plant volatile emission. Plant Physiol. 146:965–973.CrossRefPubMedGoogle Scholar
  4. Arneth, A. and Niinemets, Ü. 2010. Induced BVOCs: how to bug our models? Trends Plant Sci. 15:118–125.CrossRefPubMedGoogle Scholar
  5. Bartram, S., Jux, A., Gleixner, G., and Boland, W. 2006. Dynamic pathway allocation in early terpenoid biosynthesis of stress-induced lima bean leaves. Phytochemistry 67:1661–1672.CrossRefPubMedGoogle Scholar
  6. Beauchamp, J., Wisthaler, A., Hansel, A., Kleist, E., Miebach, M., Niinemets, Ü., Schurr, U., and Wildt, J. 2005. Ozone induced emissions of biogenic VOC from tobacco: relations between ozone uptake and emission of LOX products. Plant Cell Environ. 28:1334–1343.CrossRefGoogle Scholar
  7. Bernays, E. A., Driver, G. C., and Bilgener, M. 1989. Herbivores and plant tannins. Adv. Ecol. Res. 19:263–302.CrossRefGoogle Scholar
  8. Beyaert, I., Wäschke, N, Scholz, A., Varama, M., Reinecke, A., and Hilker, M. 2010. Relevance of resource-indicating key volatiles and habitat odour for insect orientation. Anim. Behav. 79:1077–1086.CrossRefGoogle Scholar
  9. Blande, J. D., Korjus, M., and Holopainen, J. K. 2010. Foliar methyl salicylate emissions indicate prolonged aphid infestation on silver birch and black alder. Tree Physiol. 30:404–416.CrossRefPubMedGoogle Scholar
  10. Bozzola, J. J. and Russell, L. D. 1992. Electron Microscopy. Principles and Techniques for Biologists: Jones and Bartlett Eds.Google Scholar
  11. Brilli, F., Ciccioli, P., Frattoni, M., Prestininzi, M., Spanedda, A. F., and Loreto, F. 2009. Constitutive and herbivore-induced monoterpenes emitted by Populus x euroamericana leaves are key volatiles that orient Chrysomela populi beetles. Plant Cell Environ. 32:542–552.CrossRefPubMedGoogle Scholar
  12. Bruinsma, M., Pang, B. P., Mumm, R., Van Loon, J. J. A., and Dicke M. 2009. Comparing induction at an early and late step in signal transduction mediating indirect defence in Brassica oleracea. J. Exp. Bot. 60:2589–2599.CrossRefPubMedGoogle Scholar
  13. Bruinsma, M., Van Broekhoven, S., Poelman, E. H., Posthumus, M. A., Muller, M. J., Van Loon, J. J. A., and Dicke, M. 2010. Inhibition of lipoxygenase affects induction of both direct and indirect plant defences against herbivorous insects. Oecologia 162:393–404.CrossRefPubMedGoogle Scholar
  14. Burns, W. A. 1978. Thick sections: Technique and applications, in B. F. Trump and R. J. Jones (eds.). Diagnostic Electron Microscopy. Wiley, New York.Google Scholar
  15. Capitani, D., Brilli, F., Mannina, L., Proietti, N., and Loreto, F. 2009. In situ investigation of leaf water status by portable unilateral Nuclear Magnetic Resonance. Plant Physiol. 149(4):1638–1647.CrossRefPubMedGoogle Scholar
  16. Chen, L., and Fadamiro, H. Y. 2007. Differential electroantennogram response of females and males of two parasitoid species to host-related green leaf volatiles and inducible compounds. Bull. Entomol. Res. 97:515–522.CrossRefPubMedGoogle Scholar
  17. Copolovici, L., and Niinemets, Ü. 2010. Flooding induced emissions of volatile signalling compounds in three tree species with differing waterlogging tolerance. Plant Cell Environ. 33:1582–1594.PubMedGoogle Scholar
  18. Copolovici, L., Kännaste, A., and Niinemets, Ü. 2009. Gas chromatography-mass spectrometry method for determination of monoterpene and sesquiterpene emissions from stressed plants. Stud. Univ. Babes-Bol. Chem. 54:329–334.Google Scholar
  19. Cornelissen, T. G., and Fernandes, G. W. 2001. Induced defences in the neotropical tree Bauhinia brevipes (Vog.) to herbivory: effects of damage-induced changes on leaf quality and insect attack. Trees-Struct. Funct. 15:236–241.Google Scholar
  20. De boer, J. G., and Dicke, M. 2004. The role of methyl salicylate in prey searching behavior of the predatory mite Phytoseiulus persimilis. J. Chem. Ecol. 30:255–271.CrossRefPubMedGoogle Scholar
  21. De boer, J. G., Posthumus, M. A., and Dicke, M. 2004. Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite. J. Chem. Ecol. 30:2215–2230.CrossRefPubMedGoogle Scholar
  22. De coninck, B. M. A., Sels, J., Venmans, E., Thys, W., Goderis, I., Carron, D., Delaure, S. L., Cammue, B. P. A., De bolle, M. F. C., and Mathys, J. 2010. Arabidopsis thaliana plant defensin AtPDF1.1 is involved in the plant response to biotic stress. New Phytol. 187:1075–1088.CrossRefPubMedGoogle Scholar
  23. Delaney, K. J. 2008. Injured and uninjured leaf photosynthetic responses after mechanical injury on Nerium oleander leaves, and Danaus plexippus herbivory on Asclepias curassavica leaves. Plant Ecol. 199:187–200.CrossRefGoogle Scholar
  24. Delaney, K. J., Haile, F. J., Peterson, R. K. D., and Higley, L. G. 2008. Impairment of leaf photosynthesis after insect herbivory or mechanical injury on common milkweed, Asclepias syriaca. Environ. Entomol. 37:1332–1343.CrossRefPubMedGoogle Scholar
  25. Dicke, M. 2009. Behavioural and community ecology of plants that cry for help. Plant Cell Environ. 32:654–665.CrossRefPubMedGoogle Scholar
  26. Dicke, M., Gols, R., Ludeking, D., and Posthumus, M. A. 1999. Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants. J. Chem. Ecol. 25:1907–1922.CrossRefGoogle Scholar
  27. Dolch, R. and Tscharntke, T. 2000. Defoliation of alders (Alnus glutinosa) affects herbivory by leaf beetles on undamaged neighbours. Oecologia 125:504–511.CrossRefGoogle Scholar
  28. Dudareva, N., Negre, F., Nagegowda, D. A., and Orlova, I. 2006. Plant volatiles: Recent advances and future perspectives. Crit. Rev. Plant Sci. 25:417–440.CrossRefGoogle Scholar
  29. Dudt, J. F., and Shure, D. J. 1994. The influence of light and nutrients on foliar phenolics and insect herbivory. Ecology 75:86–98.CrossRefGoogle Scholar
  30. Evans, J. R., Voncaemmerer, S., Setchell, B. A., and Hudson, G. S. 1994. The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. Aust. J. Plant Physiol. 21:475–495.CrossRefGoogle Scholar
  31. Evans, J. R., Kaldenhoff, R., and Terashima, I. 2009. Resistances along the CO2 diffusion pathway inside leaves. J. Exp. Bot. 60:2235–2248.CrossRefPubMedGoogle Scholar
  32. Gershenzon, J., and Dudareva, N. 2007. The function of terpene natural products in the natural world. Nat. Chem. Biol. 3:408–414.CrossRefPubMedGoogle Scholar
  33. Giertych, M. J., Karolewski, P., Zytkowiak, R., and Oleksyn, J. 2006. Differences in defence strategies against herbivores between two pioneer tree species: Alnus glutinosa (L.) Gaertn. and Betula pendula Roth. Pol. J. Ecol. 54:181–187.Google Scholar
  34. Gosset, V., Harmel, N., Gobel, C., Francis, F., Haubruge, E., Wathelet, J. P., Du jardin, P., Feussner, I., and Fauconnier, M. L. 2009. Attacks by a piercing-sucking insect (Myzus persicae Sultzer) or a chewing insect (Leptinotarsa decemlineata Say) on potato plants (Solanum tuberosum L.) induce differential changes in volatile compound release and oxylipin synthesis. J. Exp. Bot. 60:1231–1240.CrossRefPubMedGoogle Scholar
  35. Gouinguene, S., Alborn, H., and Turlings, T. C. J. 2003. Induction of volatile emissions in maize by different larval instars of Spodoptera littoralis. J. Chem. Ecol. 29:145–162.CrossRefPubMedGoogle Scholar
  36. Halitschke, R., Kessler, A., Kahl, J., Lorenz, A., and Baldwin, I. T. 2000. Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuata. Oecologia 124:408–417.CrossRefGoogle Scholar
  37. Hattenschwiler, S., and Schafellner, C. 1999. Opposing effects of elevated CO2 and N deposition on Lymantria monacha larvae feeding on spruce trees. Oecologia 118:210–217.CrossRefGoogle Scholar
  38. Heiden, A. C., Kobel, K., Langebartels, C., Schuh-thomas, G., and Wildt, J. 2003. Emissions of oxygenated volatile organic compounds from plants. Part I: Emissions from lipoxygenase activity. J. Atmos. Chem. 45:143–172.CrossRefGoogle Scholar
  39. Holopainen, J. K. 2004. Multiple functions of inducible plant volatiles. Trends Plant Sci. 9:529–533.CrossRefPubMedGoogle Scholar
  40. Isebrands, J. G., Guenther, A. B., Harley, P., Helmig, D., Klinger, L., Vierling, L., Zimmerman, P., and Geron, C. 1999. Volatile organic compound emission rates from mixed deciduous and coniferous forests in Northern Wisconsin, USA. Atmos. Environ. 33:2527–2536.CrossRefGoogle Scholar
  41. Kännaste, A., Vongvanich, N., and Borg-karlson, A. K. 2008. Infestation by a Nalepella species induces emissions of α- and β-farnesenes, (-)-linalool and aromatic compounds in Norway spruce clones of different susceptibility to the large pine weevil. Arthropod-Plant Interactions 2:31–41.CrossRefGoogle Scholar
  42. Kännaste, A., Nordenhem, H., Nordlander, G., and Borg-karlson, A. K. 2009. Volatiles from a mite-infested spruce clone and their effects on pine weevil behavior. J. Chem. Ecol. 35:1262–1271.CrossRefPubMedGoogle Scholar
  43. Lee, S., and Chappell, J. 2008. Biochemical and genomic characterization of terpene synthases in Magnolia grandiflora. Plant Physiol. 147:1017–1033.CrossRefPubMedGoogle Scholar
  44. Li-Cor Inc. 2001. Interfacing Custom Chambers to the LI-6400 Sensor Head. LI-6400 Portable Photosynthesis System: Application Note 3. Li-Cor Inc., Lincoln, 7 p.Google Scholar
  45. Lindfors, V., Laurila, T., Hakola, H., Steinbrecher, R., and Rinne, J. 2000. Modeling speciated terpenoid emissions from the European boreal forest. Atmos. Environ. 34:4983–4996.CrossRefGoogle Scholar
  46. Marquis, R. J., and Whelan, C. J. 1994. Insectivorous birds increase growth of white oak through consumption of leaf-chewing insects. Ecology 75:2007–2014.CrossRefGoogle Scholar
  47. Martel, J., and Mauffette, Y. 1997. Lepidopteran Communities in Temperate Deciduous Forests Affected by Forest Decline. Denmark Blackwell, Oxford.Google Scholar
  48. Mercer, E. H. 1963. A scheme for section staining in electron microscopy. J. Royal Micro. Soc. 81:179.Google Scholar
  49. Mumm, R., Schrank, K., Wegener, R., Schulz, S., and Hilker, M. 2003. Chemical analysis of volatiles emitted by Pinus sylvestris after induction by insect oviposition. J. Chem. Ecol. 29:1235–1252.CrossRefPubMedGoogle Scholar
  50. Nagegowda, D. A. 2010. Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett. 584:2965–2973.CrossRefPubMedGoogle Scholar
  51. Navia-gine, W. G., Yuan, J. S., Mauromoustakos, A., Murphy, J. B., Chen, F., and Korth, K. L. 2009. Medicago truncatula (E)-β-ocimene synthase is induced by insect herbivory with corresponding increases in emission of volatile ocimene. Plant Physiol. Bioch. 47:416–425.CrossRefGoogle Scholar
  52. Niinemets, Ü. 2010. Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends Plant Sci. 15:145–153.CrossRefPubMedGoogle Scholar
  53. Niinemets, Ü. 2011. Whole plant photosynthesis. in J. Flexas, F. Loreto and H. Medrano (eds.). Terrestrial Photosynthesis in a Changing Environment. The Molecular, Physiological and Ecological Bases of Photosynthesis Driving its Response to the Environmental Changes. Cambridge University Press, Cambridge In press.Google Scholar
  54. Niinemets, Ü., Portsmuth, A., Tena, D., Tobias, M., and Valladares, F. 2007. Do we underestimate the importance of leaf size in plant economics? Disproportionate scaling of support costs within the spectrum of leaf physiognomy. Ann. Bot. 100:283–303.CrossRefPubMedGoogle Scholar
  55. Niinemets, Ü., Díaz-espejo, A., Flexas, J., Galmés, J., and Warren, C. R. 2009. Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J. Exp. Bot. 60:2249–2270.CrossRefPubMedGoogle Scholar
  56. Paige, K. N. 1999. Regrowth following ungulate herbivory in Ipomopsis aggregata: geographic evidence for overcompensation. Oecologia 118(3):316–323.CrossRefGoogle Scholar
  57. Pinto, D. M., Blande, J. D., Nykänen, R., Dong, W. X., Nerg, A. M., and Holopainen, J. K. 2007. Ozone degrades common herbivore-induced plant volatiles: does this affect herbivore prey location by predators and parasitoids? J. Chem. Ecol. 33:683–694CrossRefPubMedGoogle Scholar
  58. Poelman, E. H., Van Loon, J. J. A., and Dicke, M. 2008. Consequences of variation in plant defense for biodiversity at higher trophic levels. Trends Plant Sci.13: 534–541.CrossRefPubMedGoogle Scholar
  59. Poveda, K., Steffan-dewenter, I., Scheu, S., and Tscharntke, T. 2003. Effects of below- and above-ground herbivores on plant growth, flower visitation and seed set. Oecologia 135:601–605.PubMedGoogle Scholar
  60. Rasulov, B., Copolovici, L., Laisk, A., and Niinemets, Ü. 2009. Postillumination isoprene emission: in vivo measurements of dimethylallyldiphosphate pool size and isoprene synthase kinetics in aspen leaves. Plant Physiol. 149:1609–1618.CrossRefPubMedGoogle Scholar
  61. Reichardt, F. B., Chapin, F. S., III, Bryant, J. P., Mattes, B. R., and Clausen, T. P. 1991. Carbon/nutrient balance as a predictor of plant defense in Alaskan balsam poplar: potential importance of metabolite turnover. Oecologia 88:401–406.CrossRefGoogle Scholar
  62. Rose, U. S. R., and Tumlinson, J. H. 2005. Systemic induction of volatile release in cotton: How specific is the signal to herbivory? Planta 222:327–335.CrossRefPubMedGoogle Scholar
  63. Sallaud, C., Rontein, D., Onillon, S., Jabes, F., Duffe, P., Giacalone, C., Thoraval, S., Escoffier, C., Herbette, G., Leonhardt, N., Causse, M., and Tissier, A. 2009. A novel pathway for sesquiterpene biosynthesis from Z,Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites. Plant Cell 21:301–317.CrossRefPubMedGoogle Scholar
  64. Schaub, A., Blande, J. D., Graus, M., Oksanen, E., Holopainen, J. K., and Hansel, A. 2010. Real-time monitoring of herbivore induced volatile emissions in the field. Physiol. Plantarum 138:123–133.CrossRefGoogle Scholar
  65. Schuman, M. C., Heinzel, N., Gaquerel, E., Svatos, A., and Baldwin, I. T. 2009. Polymorphism in jasmonate signaling partially accounts for the variety of volatiles produced by Nicotiana attenuata plants in a native population. New Phytol. 183:1134–1148.CrossRefPubMedGoogle Scholar
  66. Silla, F., Fleury, M., Mediavilla, S., and Escudero, A. 2008. Effects of simulated herbivory on photosynthesis and N resorption efficiency in Quercus pyrenaica Willd. saplings. Trees-Struct. Funct. 22:785–793.Google Scholar
  67. Tikkanen, O. P., and Julkunen-tiitto, R. 2003. Phenological variation as protection against defoliating insects: the case of Quercus robur and Operophtera brumata. Oecologia 136:244–251.CrossRefPubMedGoogle Scholar
  68. Toome, M., Randjärv, P., Copolovici, L., Niinemets, Ü., Heinsoo, K., Luik, A., and Noe, SM. 2010. Leaf rust induced volatile organic compounds signalling in willow during the infection. Planta 232:235–243.CrossRefPubMedGoogle Scholar
  69. Tscharntke, T., Thiessen, S., Dolch, R., and Boland, W. 2001. Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa. Biochem. Syst. Ecol. 29:1025–1047.CrossRefGoogle Scholar
  70. Van Asch, M., and Visser, M. E. 2007. Phenology of forest caterpillars and their host trees: the importance of synchrony. Annu. Rev. Entomol. 52:37–55.CrossRefPubMedGoogle Scholar
  71. Von Caemmerer, S., and Farquhar, G. D. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387.CrossRefGoogle Scholar
  72. Wesolowski, T., and Rowinski, P. 2006. Tree defoliation by winter moth Operophtera brumata L. during an outbreak affected by structure of forest landscape. Forest Ecol. Manag. 221:299–305.Google Scholar
  73. Wu, J. Q., and Baldwin, I. T. 2009. Herbivory-induced signalling in plants: perception and action. Plant Cell Environ. 32:1161–1174.CrossRefPubMedGoogle Scholar
  74. Yuan, J. S., Kollner, T. G., Wiggins, G., Grant, J., Degenhardt, J., and Chen, F. 2008. Molecular and genomic basis of volatile-mediated indirect defense against insects in rice. Plant J. 55:491–503.CrossRefPubMedGoogle Scholar
  75. Zhang, P. J., Zheng, S. J., Van Loon, J. J. A., Boland, W., David, A., Mumm, R., and Dicke, M. 2009. Whiteflies interfere with indirect plant defense against spider mites in Lima bean. Proc. Natl. Acad. Sci. U. S. A. 106:21202–21207.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Lucian Copolovici
    • 1
  • Astrid Kännaste
    • 1
  • Triinu Remmel
    • 2
  • Vivian Vislap
    • 1
  • Ülo Niinemets
    • 1
  1. 1.Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
  2. 2.Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia

Personalised recommendations