Journal of Chemical Ecology

, Volume 37, Issue 1, pp 57–70 | Cite as

Qualitative Variation in Proanthocyanidin Composition of Populus Species and Hybrids: Genetics is the Key

  • Ashley N. Scioneaux
  • Michael A. Schmidt
  • Melissa A. Moore
  • Richard L. Lindroth
  • Stuart C. Wooley
  • Ann E. Hagerman


The literature on proanthocyanidins (tannins) in ecological systems is dominated by quantitative studies. Despite evidence that the qualitative characteristics (subunit type, polymer chain length) of these complex polyphenolics are important determinants of biological activity, little is known about genetic and environmental controls on the type of proanthocyanidins produced by plants. We tested the hypothesis that genetics, season, developmental stage, and environment determine proanthocyanidin qualitative characteristics by using four Populus “cross types” (narrowleaf [P. angustifolia], Fremont [P. fremontii], F1 hybrids, and backcrosses to narrowleaf). We used thiolysis and HPLC analysis to characterize the proanthocyanidins, and found that genetics strongly control composition. The narrowleaf plants accumulate mixed procyanidin/prodelphinidins with average composition epicatechin11-epigallocatechin8-catechin2-catechin(terminal). Backcross genotypes produce mixed procyanidin/prodelphinidins similar to narrowleaf, while Fremont makes procyanidin dimers, and the F1 plants contain procyanidin heptamers. Less striking effects were noted for genotype × environment, while season and developmental zone had little effect on proanthocyanidin composition or chain length. We discuss the metabolic and ecological consequences of differences in condensed tannin qualitative traits.

Key Words

Populus Condensed tannin Genetic variation Polyphenolic Proanthocyanidin Tannin composition Thiolysis 



Thanks to Kala Levine for acid butanol analyses, and to Michael Hughes (Statistical Consulting Center, Miami University) for assistance with the statistical analysis. Catechin trimer C-2 was a generous gift from H. H. Kolodziej. Gina Wimp, Brian Rehill, Liza Holeski, Tony Giuffre, and Adam Gusse helped collect and process the cottonwood leaf samples. J. Schweitzer, University of Tennessee, kindly provided the leaf outlines for Figure 5. Grant support: NSF REU DBI-0353915 (Miami University), the Miami University Undergraduate Summer Scholars Program, Agricultural Research Services Specific Cooperative Agreement with Miami University Number 58-1932-6-634 and NSF Frontiers in Integrative Biological Research, DEB-0425908 and NSF DEB-0841609 (University of Wisconsin-Madison).


  1. Agrell, J., McDonald, E. P., and Lindroth, R. L. 2000. Effects of CO2 and light on tree phytochemistry and insect performance. OIKOS 88:259–272.CrossRefGoogle Scholar
  2. Arnold, T. M., and Schultz, J. C. 2002. Induced sink strength as a prerequisite for induced tannin biosynthesis in developing leaves of Populus. Oecologia 130:585–593.CrossRefGoogle Scholar
  3. Ayabe, S., and Akashi, T. 2006. Cytochrome P450s in flavonoid metabolism. Phytochem. Rev. 5:271–282.CrossRefGoogle Scholar
  4. Ayres, M. P., Clausen, T. P., Maclean, J. R., Redman, A. M., and Reichardt, P. B. 1997. Diversity of structure and antiherbivore activity in condensed tannins. Ecology 78:1696–1712.CrossRefGoogle Scholar
  5. Barbehenn, R. V., Jones, C. P., Hagerman, A. E., Karonen, M., and Salminen, J. 2006. Ellagitannins have greater oxidative activities than condensed tannins and galloyl gucoses at high pH: Potential impact on caterpillars. J. Chem. Ecol. 32:2253–2267.CrossRefPubMedGoogle Scholar
  6. Coq, S., Souquet, J., Meudec, E., Cheynier, V., and Hattenschwiler, S. 2010. Interspecific variation in leaf letter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology 91: 2080–2091.CrossRefPubMedGoogle Scholar
  7. Crawford, D. J. 1974. A morphological and chemical study of Populus acuminata rydeberg. Brittonia 26:74–98.CrossRefGoogle Scholar
  8. Donaldson, J. R., Stevens, M. T., Barnhill, H. R., and Lindroth, R. L. 2006. Age-related shifts in leaf chemistry of clonal aspen (Populus tremuloides). J. Chem. Ecol. 32:1415–1429.CrossRefPubMedGoogle Scholar
  9. Driebe, E. M., and Whitham, T. G. 2000. Cottonwood hybridization affects tannin and nitrogen content of leaf litter and alters decomposition. Oecologia 123:99–107.CrossRefGoogle Scholar
  10. Feeny, P. 1976. Plant apparency and chemical defense. Recent Adv. Phytochem. 10:1–40.Google Scholar
  11. Foss, L. K., and Rieske, L. K. 2003. Species-specific differences in oak foliage affect preference and performance of gypsy moth caterpillars. Ent. Exp. Appl. 108:87–93.CrossRefGoogle Scholar
  12. Greenaway, W., English, S., Wollenweber, E., and Whatley, F. R. 1989. Series of novel flavanones identified by gas chromatography-mass spectrometry in bud exudate of Populus fremontii and Populus maximowieczii. J. Chromatog. 481:352–357.CrossRefGoogle Scholar
  13. Gupta, R. K., and Haslam, E. 1978. Plant proanthocyanidins. Part 5. Sorghum polyphenols. J. Chem. Soc. Perk. I 1978:892–896.CrossRefGoogle Scholar
  14. Guyot, S., Marnet, N., and Drilleau, J. 2001a. Thiolysis-HPLC characterization of apple procyanidins covering a large range of polymerization states. J. Agric. Food Chem. 49:14–20.CrossRefPubMedGoogle Scholar
  15. Guyot, S., Marnet, N., Sanoner, P., and Drilleau, J. 2001b. Direct thiolysis on crude apple materials for high-performance liquid chromatography characterization and quantification of polyphenols in cider apple tissues and juices. Meth. Enzymol. 335:57–70.CrossRefPubMedGoogle Scholar
  16. Hagerman, A. E., and Butler, L. G. 1980. Condensed tannin purification and characterization of tannin-associated proteins. J. Agric. Food Chem. 28:947–952.CrossRefPubMedGoogle Scholar
  17. Karonen, M., Ossipov, V., Ossipova, S., Kapari, L., Loponen, J., Matsumura, H., Kohno, Y., Mikami, C., Sakai, Y., Izuta, T., and Pihlaja, K. 2006. Effects of elevated carbon dioxide and ozone on foliar proanthocyanidins in Betula platyphylla, Betula eramnii, and Fagus crenata seedlings. J. Chem. Ecol. 32:1445–1458.CrossRefPubMedGoogle Scholar
  18. Kolodzieg, H. 1990. Oligomeric flavan-3-ols from medicinal willow bark. Phytochemistry 29:955–960.CrossRefGoogle Scholar
  19. Koupai-Abyazani, M., McCallum, J., Muir, A. D., Bohm, B. A., Towers, G. H. N., and Gruber, M. Y. 1993a. Developmental changes in the composition of proanthocyanidins from leaves of sainfoin (Onobrychis viciifolia scop.) as determined by HPLC analysis. J. Agric. Food Chem. 41:1066–1070.CrossRefGoogle Scholar
  20. Koupai-Abyazani, M., Muir, A. D., Bohm, B. A., Towers, G. H. N., and Gruber, M. Y. 1993b. The proanthocyanidin polymers in some species of Onobrychis. Phytochemistry 34:113–117.CrossRefGoogle Scholar
  21. Kraus, T. E. C., Yu, Z., Preston, C. M., Dahlgren, R. A., and Zasoski, R. J. 2003. Linking chemical reactivity and protein precipitation to structural characteristics of foliar tannins. J. Chem. Ecol. 29:703–730.CrossRefPubMedGoogle Scholar
  22. Laitinen, M., Julkunen-Tiitto, R., and Rousi, M. 2000. Variation in phenolic compounds within a birch (Betula pendula) population. J. Chem. Ecol. 26:1609–1623.CrossRefGoogle Scholar
  23. Laitinen, J., Julkunen-Tiitto, R., Rousi, M., Heinonen, A., and Tahvanainen, J. 2005. Ontogeny and evironment as determinats of the secondary chemistry of three species of white birch. J. Chem. Ecol. 31:2243–2270.CrossRefPubMedGoogle Scholar
  24. Lindroth, R. L., Roth, S., and Nordheim, E. V. 2001. Genotypic variation in response of quaking aspen (Populus tremuloides) to atmospheric CO2 enrichment. Oecologia 126:371–379.CrossRefGoogle Scholar
  25. Lower, S. S., and Orians, C. M. 2003. Soil nutrients and water availability interact to influence willow growth and chemistry but not leaf beetle performance. Ent. Exp. Appl. 107:66–79.Google Scholar
  26. Monagas, M., Gomez-Cordoves, C., Bartolome, G., Laureano, O., and Dasilva, J. M. R. 2003. Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. cv. graciano, tempranillo, and cabernet sauvignon. J. Agric. Food Chem. 51:6475–6481.CrossRefPubMedGoogle Scholar
  27. Nierop, K. G. J., Preston, C. M., and Verstraten, J. M. 2006. Linking the B ring hydroxylation pattern of condensed tannins to C, N and P mineralization. A case study using four tannins. Soil Biol. Biochem. 38:2794–2802.CrossRefGoogle Scholar
  28. Orians, C. M., Griffiths, M. E., Roche, B. M., and Fritz, R. S. 2000. Phenolic glycosides and condensed tannins in Salix sericea, S. eriocephala and their F1 hybrids: Not all hybrids are created equal. Biochem. Syst. Ecol. 28:619–632.CrossRefPubMedGoogle Scholar
  29. Osier, T. L., and Lindroth, R. L. 2006. Genotype and environment determine allocation to and costs of resistance in quaking aspen. Oecologia 148:293–303.CrossRefPubMedGoogle Scholar
  30. Porter, L. J., Hrstich, L. N., and Chan, B. C. 1986. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25:223–230.CrossRefGoogle Scholar
  31. Rehill, B. J., Whitham, T. G., Martinsen, G. D., Schweitzer, J. A., Bailey, J. K., and Lindroth, R. L. 2006. Developmental trajectories in cottonwood phytochemistry. J. Chem. Ecol. 32:2269–2285.CrossRefPubMedGoogle Scholar
  32. Salminen, J., Roslin, T., Karonen, M., Sinkkonen, J., Pihlaja, K., and Pulkkinen, P. 2004. Seasonal variation in the content of hydrolyzable tannins, flavonoid glycosides, and proanthocyanidins in oak leaves. J. Chem. Ecol. 30:1693–1711.CrossRefPubMedGoogle Scholar
  33. Seitz, C., Ameres, S., and Forkmann, G. 2007. Identification of the molecular basis for the functional difference between flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase. FEBS Letters 581:3429–3434.CrossRefPubMedGoogle Scholar
  34. Souquet, J. M., Cheynier, V., Brossaud, F., and Moutounet, M. 1996. Polymeric proanthocyanidins from grape skins. Phytochemistry 43:509–512.CrossRefGoogle Scholar
  35. Stafford HA (1990) Flavonoid metabolism. CRC Press, Boca Raton, FL, pp. 43–44.Google Scholar
  36. Stevens, M. L., and Lindroth, R. L. 2005. Induced resistance in the indeterminate growth of aspen (Populus tremuloides). Oecologia 145:298–306.CrossRefPubMedGoogle Scholar
  37. Tsai, C., Harding, S. A., Jschaplinski, T. J., Lindroth, R. L., and Yuan, Y. 2006. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. New Phytologist 172:47–62.CrossRefPubMedGoogle Scholar
  38. Xie, D., and Dixon, R. A. 2005. Proanthocyanidin biosynthesis—still more questions than answers? Phytochemistry 66:2127–2144.CrossRefPubMedGoogle Scholar
  39. Yarnes, C. T., Boecklen, W. J., Tuominen, K., and Salminen, J. 2006. Defining phytochemical phenotypes: Size and shape analysis of phenolic compounds in oaks (fagaceae, quercus) of the chihuahuan desert. Can. J. Bot. 84:1233–1248.CrossRefGoogle Scholar
  40. Yarnes, C. T., Boecklen, W. J., and Salminen, J. 2008. No simple sum: Seasonal variation in tannin phenotypes and leaf-miners in hybrid oaks. Chemoecology 18:39–51.CrossRefGoogle Scholar
  41. Yoshida, T., Hatano, T., and Ito, H. 2005. High molecular weight plant polyphenols (tannins): Prospective functions. Recent Adv. Phytochem. 39:163–190.CrossRefGoogle Scholar
  42. Whitham, T.G., Bailey, J.K., Schweitzer, J.A., Shuster, S.M., Bangert, R.K., Leroy, C.J., Lonsdorf, E.V., Allan, G.H., Difazio, S.., Potts, B.M., Fischer, D.G., Gehring, C.A., Lindroth, R.L., Marks, J.C., Hart, S.C., Wimp, G.M., and Wooley, S.C. 2006. A framework for community and ecosystem genetics: from genes to ecosystems. Nat. Rev. Genet. 17: 510–523.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ashley N. Scioneaux
    • 1
  • Michael A. Schmidt
    • 1
  • Melissa A. Moore
    • 1
  • Richard L. Lindroth
    • 2
  • Stuart C. Wooley
    • 2
    • 3
  • Ann E. Hagerman
    • 1
  1. 1.Department of Chemistry & BiochemistryMiami UniversityOxfordUSA
  2. 2.Department of EntomologyUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of Biological SciencesCalifornia State University StanislausTurlockUSA

Personalised recommendations