Journal of Chemical Ecology

, Volume 36, Issue 11, pp 1189–1198 | Cite as

Variations in Worker Cuticular Hydrocarbons and Soldier Isoprenoid Defensive Secretions Within and Among Introduced and Native Populations of the Subterranean Termite, Reticulitermes flavipes

  • Elfie Perdereau
  • Franck Dedeine
  • Jean-Philippe Christidès
  • Anne-Geneviève Bagnères


In social insects, cuticular hydrocarbons (CHCs) play a central role in nestmate recognition. CHCs have proved to be useful for identifying species and differentiating populations. In combination with CHCs, isoprenoid soldier defensive secretions (SDSs) have been previously used in some termite species for chemotaxonomic analyses. This study compared the levels of chemical variation within and among introduced (French) and native (U.S.) populations of the subterranean termite, Reticulitermes flavipes. Worker CHCs and soldier SDSs from termites collected from colonies in nine populations in Florida, Louisiana, and France were analyzed. Discriminant analyses revealed that both localities and populations can be distinguished by using the variation in CHC profiles. Principal component analyses of CHC profiles as well as the calculation of two distance parameters (Nei and Euclidean) revealed remarkable chemical homogeneity within and among French populations. These analyses also showed that the CHC profiles of French populations were closer to termite populations from Louisiana than to those from Florida. Of the six distinct SDS chemotypes, one was common to populations in France and Louisiana. The possibility that populations in France originated from Louisiana, and the potential causes and consequences of chemical homogeneity within introduced populations are discussed.

Key Words

Cuticular hydrocarbons Defensive secretions Gas chromatograpy-mass spectrometry (GC-MS) Invasive species Isoprenoids Principal component analysis Reticulitermes flavipes Rhinotermitidae 



We thank Simon Dupont for help in collecting samples of R. flavipes in France, Ed Vargo, and Claudia Husseneder for help in collecting samples in Louisiana (U.S.), Michael Scharf and Nan-Yao Su’s team for collecting samples in Florida (U.S.), and Tony Tebby for editing the manuscript. We thank Sylvain Guyot for his help in Rgui analyses. This work is part of the Ph.D. thesis of E. Perdereau.


  1. Austin, J. W., Szalanski, A. L., Uva, P., Bagnères, A. -G., and Kence, A. 2002. A comparative genetic analysis of the subterranean termite genus Reticulitermes (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am. 95:753–760.CrossRefGoogle Scholar
  2. Austin, J. W., Szalanski, A. L., Scheffrahn, R. H., Messenger, M. T., Dronnet, S., and Bagnères, A. -G. 2005. Genetic evidence for the synonymy of two Reticulitermes species: Reticulitermes flavipes and Reticulitermes santonensis. Ann. Entomol. Soc. Am. 98:395–401.CrossRefGoogle Scholar
  3. Austin, J. W., Bagnères, A. -G., Szalanski, A. L., Scheffrahn, R. H., Heintschel, B. P., Messenger, M. T., Clément, J. -L., and Gold, R. E. 2007. Reticulitermes malletei (Isoptera : Rhinotermitidae): a valid nearctic subterranean termite from eastern North America. Zootaxa (1554):1–26.Google Scholar
  4. Bagnères, A. -G. 2006. Recent data on termite invasion and infestation in Western Europe, p. 80, in Proceedings of National Conference on Urban Entomology, May 14–21, 2006, Raleigh, NC, USA.Google Scholar
  5. Bagnères, A. -G. and Wicker-thomas, C. 2010. Chemical taxonomy with hydrocarbons, pp. 121–162, in G. J. Blomquist and A.-G. Bagnères (eds.). Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  6. Bagnères, A. -G., Clément, J. -C., Blum, M. S., Severson, R. F., Joulie, C. and Lange, C. 1990. Cuticular hydrocarbons and defensive compounds of Reticulitermes flavipes (Kollar) and R. santonensis (Feytaud): polymorphism and chemotaxonomy. J. Chem. Ecol. 16:3213–3244.CrossRefGoogle Scholar
  7. Blomquist, G. J. and Bagnères, A.-G. 2010. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press, Cambridge, UK, p. 528.CrossRefGoogle Scholar
  8. Bobe-moreau, J. 1843. Mémoire sur les Termites observés à Rochefort et dans divers autres lieux du département de la Charente-Inférieure. Saintes.Google Scholar
  9. Brandt, M., Van Wilgenburg, E., and Tsutsui, N. D. 2009. Global-scale analyses of chemical ecology and population genetics in the invasive Argentine ant. Mol. Ecol. 18:997–1005.CrossRefPubMedGoogle Scholar
  10. Brown, W. V., Watson, J. A. L., Carter, F. L., Lacey, M. J., Barett, R. A., and Mcdaniel, C. A. 1990. Preliminary examination of cuticular hydrocarbons of worker termites as chemotaxonomic characters for some Australian species of Coptotermes (Isoptera: Rhinotermitidae). Sociobiol. 16:305–328.Google Scholar
  11. Carlin, N. F. and Hölldobler, B. 1986. The kin recognition system of carpenter ants (Camponotus spp.) I. Hierarchical cues in small colonies. Behav. Ecol. Sociobiol. 19:123–134.CrossRefGoogle Scholar
  12. Clément, J. -L. and Bagnères, A. -G. 1998. Nestmate recognition in termites, pp. 126–155, in R. K. Vander Meer, M. D. Breed, K. E. Espelie, and M. L. Winston (eds.). Pheromone Communication in Social Insects. Ants, Wasps, Bees, and Termites: Westview Press, Boulder, CO, US.Google Scholar
  13. Clément, J. -L., Bagnères, A. -G., Uva, P., Wilfert, L., Quintana, A., Reinhard, J., and Dronnet, S. 2001. Biosystematics of Reticulitermes termites in Europe: morphological, chemical and molecular data. Insectes Soc. 48:202–215.CrossRefGoogle Scholar
  14. Copren, K. A., Nelson, L. J., Vargo, E. L., and Haverty, M. I. 2005. Phylogenetic analyses of mtDNA sequences corroborate taxonomic designations based on cuticular hydrocarbons in subterranean termites. Mol. Phylogenet. Evol. 35:689–700.CrossRefPubMedGoogle Scholar
  15. Dronnet, S., Chapuisat, M., Vargo, E. L., Lohou, C., and Bagnères, A. -G. 2005. Genetic analysis of the breeding system of an invasive subterranean termite, Reticulitermes santonensis, in urban and natural habitats. Mol. Ecol. 14:1311–1320.CrossRefPubMedGoogle Scholar
  16. Dronnet, S., Lohou, C., Christidès, J. -P., and Bagnères, A. -G. 2006. Cuticular hydrocarbon composition reflects genetic relationship among colonies of the introduced termite Reticulitermes santonensis Feytaud. J. Chem. Ecol. 32:1027–1042.CrossRefPubMedGoogle Scholar
  17. Elliott, K. L. and Stay, B. 2007. Juvenile hormone synthesis as related to egg development in neotenic reproductives of the termite Reticulitermes flavipes, with observations on urates in the fat body. Gen. Comp. Endocrinol. 152:102–110.CrossRefPubMedGoogle Scholar
  18. Errard, C., Delabie, J., Jourdan, H., and Hefetz, A. 2005. Intercontinental chemical variation in the invasive ant Wasmannia auropunctata (Roger) (Hymenoptera Formicidae): a key to the invasive success of a tramp species. Naturwissenschaften 92:319–323.CrossRefPubMedGoogle Scholar
  19. Feytaud, D. J. 1924. Le termite de Saintonge. Compte-Rendus de l’Académie des Sciences 171:203–205.Google Scholar
  20. Florane, C. B., Bland, J. M., Husseneder, C., and Raina, A. K. 2004. Diet-mediated inter-colonial aggression in the Formosan subterranean termite Coptotermes formosanus. J. Chem. Ecol. 30:2559–2574.CrossRefPubMedGoogle Scholar
  21. Giraud, T., Pedersen, J. S., and Keller, L. 2002. Evolution of supercolonies: The Argentine ants of southern Europe. Proc. Natl. Acad. Sci. USA. 99:6075–6079.CrossRefPubMedGoogle Scholar
  22. Hanus, R., Vrkoslav, V., Hrdy, I., Cvacka, J., and Sobotnik, J. 2010. Beyond cuticular hydrocarbons: evidence of proteinaceous secretion specific to termite kings and queens. Proc. Royal Soc. B Biol. Sci. 277: 995–1002.CrossRefGoogle Scholar
  23. Haverty, M. I., Nelson, L. J., and Page, M. 1990. Cuticular hydrocarbons of fourpopulations of Coptotermes formosanus Shiraki (Isoptera, Rhinotermitidae) in the United States—Similarities and origins of introductions. J. Chem. Ecol. 16:1635–1647.CrossRefGoogle Scholar
  24. Haverty, M. I., Nelson, L. J., and Page, M. 1991. Preliminary investigations of the cuticular hydrocarbons from North American Reticulitermes and Tropical and Subtropical Coptotermes (Isoptera: Rhinotermitidae) for chemotaxonomic studies. Sociobiology 19:51–76.Google Scholar
  25. Haverty, M. I., Grace, J. K., Nelson, L. J., and Yamamoto, R. T. 1996. Intercaste, intercolony, and temporal variation in cuticular hydrocarbons of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). J. Chem. Ecol. 22:1813–1834.CrossRefGoogle Scholar
  26. Haverty, M. I., Collins, M. S., Nelson, L. J., and Thorne, B. L. 1997. Cuticular hydrocarbons of termites of the British Virgin Islands. J. Chem. Ecol. 23:927–964.CrossRefGoogle Scholar
  27. Haverty, M. I., Woodrow, R. J., Nelson, L. J., and Grace, J. K. 2000. Cuticular hydrocarbons of termites of the Hawaiian Islands. J. Chem. Ecol. 26:1167–1191.CrossRefGoogle Scholar
  28. Henderson, G. 1998. Primer pheromones and possible soldier caste influence on the evolution of sociality in lower termites, pp. 314–330, in R. K. Vander Meer, M. D. Breed, M. L. Winston, and K. E. Espelie (eds.). Pheromone Communication in Social Insects: Ants, Wasps, Bees and Termites. Westview Press, Boulder, CO, US.Google Scholar
  29. Howard, R. W. 1993. Cuticular hydrocarbons and chemical communication, pp. 179–226, in D. W. Stanley-Samuelson and D. R. Nelson (eds.). Insect Lipids: Chemistry, Biochemistry and Biology. University of Nebraska Press, Lincoln, NE, US.Google Scholar
  30. Howard, R. W. and Blomquist, G. J. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50:371–393.CrossRefPubMedGoogle Scholar
  31. Howard, K. J., Mcdaniel, C. A., and Blomquist, G. J. 1978. Cuticular hydrocarbons of the eastern subterranean termite, Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae). J. Chem. Ecol. 4:233–245.CrossRefGoogle Scholar
  32. Howard, R. W., Mcdaniels, C. A., Nelson, D. R., Blomquist, G. J., Gelbaum, L. T., and Zalkow, L. H. 1982. Cuticular hydrocarbons of Reticulitermes virginicus (Banks) and their role as potential species and caste recognition cues. J. Chem. Ecol. 8:1227–1239.CrossRefGoogle Scholar
  33. Jenkins, T. M., Haverty, M. I., Basten, C. J., Nelson, L. J., Page, M., and Forschler, B. T. 2000. Correlation of mitochondrial haplotypes with cuticular hydrocarbon phenotypes of sympatric Reticulitermes species from the southeastern United States. J. Chem. Ecol. 26:1525–1542.CrossRefGoogle Scholar
  34. Jenkins, T. M., Dean, R. E., Verkerk, R., and Forschler, B. 2001. Phylogenetic analyses of two mitochondrial genes and one nuclear intron region illuminate European subterranean termite (Isoptera: Rhinotermitidae) gene flow, taxonomy, and introduction dynamics. Mol. Phylogenet. Evol. 20:286–293.CrossRefPubMedGoogle Scholar
  35. Kaib, M., Brandl, R., and Bagine, R. K. N. 1991. Cuticular hydrocarbon profiles: a valuable tool in termite taxonomy. Naturwissenschaften 78:176–179.CrossRefGoogle Scholar
  36. Leniaud, L. 2008. Potentialités ontogéniques, différenciation des castes et conséquences sur la structure génétique des termites du genre Reticulitermes. Ph.D. Dissertation. Université François Rabelais, Tours, p 193.Google Scholar
  37. Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York.Google Scholar
  38. Nelson, L. J., Cool, L. G., Forschler, B. T., and Haverty, M. I. 2001. Correspondence of soldier defense secretion mixtures with cuticular hydrocarbon phenotypes for chemotaxonomy of the termite genus Reticulitermes in North America. J. Chem. Ecol. 27:1449–1479.CrossRefPubMedGoogle Scholar
  39. Nelson, L. J., Cool, L. G., Solek, C. W., and Haverty, M. I. 2008. Cuticular Hydrocarbons and soldier defense secretions of Reticulitermes in Southern California: A critical analysis of the taxonomy of the genus in North America. J. Chem. Ecol. 34:1452–1475.CrossRefPubMedGoogle Scholar
  40. Nowbahari, E., Lenoir, A., Clément, J. -L., Lange, C., Bagnères, A. -G., and Joulie, C. 1990. Individual, geographical and experimental variation of cuticular hydrocarbons of the ant Cataglyphis cursor (Hymenoptera, Formicidae) - Their use in nest and subspecies recognition. Biochem. Syst. Ecol. 18:63–73.CrossRefGoogle Scholar
  41. Page, M., Nelson, L. J., Forschler, B. T., and Haverty, M. I. 2002. Cuticular hydrocarbons suggest three lineages in Reticulitermes (Isoptera: Rhinotermitidae) from North America. Comp. Biochem. Physiol. B 131:305–324.CrossRefGoogle Scholar
  42. Park, Y. I. and Raina, A. K. 2004. Juvenile hormone III titers and regulation of soldier caste in Coptotermes formosanus (Isoptera: Rhinotermitidae). J. Insect Physiol. 50:561–566.CrossRefPubMedGoogle Scholar
  43. Perdereau, E. 2010. Biologie de l’invasion d’un termite americain en France: Evolution de l’organisation sociale et conséquences sur le succès invasif. Ph.D. Dissertation, Université François Rabelais, Tours, p. 274.Google Scholar
  44. Perdereau, E., Bagnères, A. -G., Dupont, S., and Dedeine, F. 2010. High occurrence of colony fusion in a European population of the American termite Reticulitermes flavipes. Insectes Soc. doi: 10.1007/s00040-010-0096-z.Google Scholar
  45. Piskorski, R., Hanus, R., Vasickova, S., Cvacka, J., Sobotnik, J., Svatos, A., and Valterova, I. 2007. Nitroalkenes and sesquiterpene hydrocarbons from the frontal gland of three Prorhinotermes termite species. J. Chem. Ecol. 33:1787–1794.CrossRefPubMedGoogle Scholar
  46. Piskorski, R., Hanus, R., Kalinova, B., Valterova, I., Krecek, J., Bourguignon, T., Roisin, Y., and Sobotnik, J. 2009. Temporal and geographic variations in the morphology and chemical composition of the frontal gland in imagoes of Prorhinotermes species (Isoptera: Rhinotermitidae). Biol. J. Linn. Soc. 98:384–392.CrossRefGoogle Scholar
  47. Quatrefages, A. D. 1853. Note sur les termites de La Rochelle. Annales de la Société Zoologique 30:16.Google Scholar
  48. Queller, D. C. 1993. Genetic relatedness and its components in polygynous colonies of social insects, pp. 132–151, in L. Keller (ed.). Queen Number and Sociality in Insects. Oxford University Press, Oxford, UK.Google Scholar
  49. Quintana, A., Reinhard, J., Faure, R., Uva, P., Bagnères, A. -G., Massiot, G., and Clément, J. L. 2003. Interspecific variation in terpenoid composition of defensive secretions of European Reticulitermes termites. J. Chem. Ecol. 29:639–652.CrossRefPubMedGoogle Scholar
  50. Scharf, M. E., Ratliff, C. R., Hoteling, J. T., Pittendrigh, B. R., and Bennett, G. W. 2003. Caste differentiation responses of two sympatric Reticulitermes termite species to juvenile hormone homologs and synthetic juvenoids in two laboratory assays. Insectes Soc. 50:346–354.CrossRefGoogle Scholar
  51. Schwander, T., Lo, N., Beekman, M., Oldroyd, B. P., and Keller, L. 2010. Nature versus nurture in social insect caste differentiation. Trends Ecol. Evol. 25: 275–282CrossRefPubMedGoogle Scholar
  52. Su, N. Y., Ye, W. M., Ripa, R., Scheffrahn, R. H., and Giblin-davis, R. M. 2006. Identification of Chilean Reticulitermes (Isoptera : Rhinotermitidae) inferred from three mitochondrial gene DNA sequences and soldier morphology. Ann. Entomol. Soc. Am. 99:352–363.CrossRefGoogle Scholar
  53. Takematsu, Y. and Yamaoka, R. 1999. Cuticular hydrocarbons of Reticulitermes (Isoptera: Rhinotermitidae) in Japan and neighboring countries as chemotaxonomic characters. Appl. Entomol. Zool. 34:179–188.Google Scholar
  54. Tarver, M. R., Schmelz, E. A., Rocca, J. R., and Scharf, M. E. 2009. Effects of soldier-derived terpenes on soldier caste differentiation in the termite Reticulitermes flavipes. J. Chem. Ecol. 35:256–264.CrossRefPubMedGoogle Scholar
  55. Tsutsui, N. D., Suarez, A. V., Holway, D. A., and Case, T. J. 2000. Reduced genetic variation in the success of an invasive species. Proc. Nat. Acad. Sci. USA. 97:5948–5953.CrossRefPubMedGoogle Scholar
  56. Uva, P., Clément, J. -L., and Bagnères, A. -G. 2004. Colonial and geographical variations in agonistic behaviour, cuticular hydrocarbons and mtDNA of Italian populations of Reticulitermes lucifugus (Isoptera, Rhinotermitidae). Insectes Soc. 51:163–170.CrossRefGoogle Scholar
  57. Vasquez, G. M., Schal, C., and Silverman, J. 2009. Colony fusion in Argentine ants is guided by worker and queen cuticular hydrocarbon profile similarity. J. Chem. Ecol. 35:922–932CrossRefPubMedGoogle Scholar
  58. Watson, J. A., Brown, W. V., Miller, L. R., Carter, F. L., and Lacey, M. J. 1989. Taxonomy of Heterotermes (Isoptera: Rhinotermitidae) in south-eastern Australia: cuticular hydrocarbons of workers, and soldier and alate morphology. Syst. Entomol. 14:299–325.CrossRefGoogle Scholar
  59. Ye, W., Lee, C. -Y., Scheffrahn, R. H., Aleong, J. M., Su, N. -Y., Bennett, G. W., and Scharf, M. E. 2004. Phylogenetic relationships of nearctic Reticulitermes species (Isoptera: Rhinotermitidae) with particular reference to Reticulitermes arenincola Goellner. Mol. Phylogenet. Evol. 30:815–822.CrossRefPubMedGoogle Scholar
  60. Zalkow, L. H., Howard, R. W., Gelbaum, L. T., Gordon, D. M., Deutsch, H. M., and Blum, M. S. 1981. Chemical ecology of Reticulitermes flavipes (Kollar) and R. virginicus (Banks) (Rhinotermitidae): Chemistry of the soldier cephalic secretions. J. Chem. Ecol. 7:717–731.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Elfie Perdereau
    • 1
  • Franck Dedeine
    • 1
  • Jean-Philippe Christidès
    • 1
  • Anne-Geneviève Bagnères
    • 1
  1. 1.Faculté des Sciences et TechniquesI.R.B.I. CNRS UMR 6035 Université François RabelaisToursFrance

Personalised recommendations