Skip to main content
Log in

Enhancing Sorgoleone Levels in Grain Sorghum Root Exudates

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Sorgoleone, found in the root exudates of sorghum [(Sorghum bicolor (L.) Moench], has been a subject of continued research. Sorgoleone production in grain sorghum roots was investigated under different growth conditions. Methanol was the most effective solvent for extracting sorgoleone from grain sorghum roots. Sorgoleone production is high in young developing plants. The maximum concentration (μg mg−1 root dry weight) was produced in 5-d-old seedlings; beyond this age, production declined. However, considering both root weight and sorgoleone content per seedling, 10-d-old seedlings had the highest total amounts (μg). Compared with the control, sorgoleone content increased 6.1, 8.6, and 14.2 times when sorghum seeds were treated with auxins, Hoagland solution, and a combination of auxins and Hoagland solution, respectively. Among the innate immunity response elicitors, cellulose (an elicitor of plant origin) stimulated higher sorgoleone production than the others, and it produced 6.2 times more sorgoleone than the control. Combined treatment of sorghum seeds with half strength Hoagland solution and 5 μg ml−1 of IBA significantly increased both root growth and sorgoleone content in sorghum seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alsaadawi, I.S., Al-Uqaili, J.K., Alrubeaa, A.J., and Al-Hadithy, S.M. 1986. Allelopathic suppression of weed and nitrification by selected cultivars of Sorghum bicolor (L.) Moench. J. Chem. Ecol. 12:209–219.

    Article  Google Scholar 

  • Arroo, R.R.J., Develi, A., Meijers, H., Van de Westerlo, E., Kemp, A.K., Croes, A.F., and Wullems, G.J. 1995. Effects of exogenous auxin on root morphology and secondary metabolism in Tagetes patula hairy root cultures. Physiol. Plant. 93:233–240.

    Article  CAS  Google Scholar 

  • Baerson, S.R., Dayan, F.E., Rimando, A.M., Nanayakkara, N.P.D., Liu, C.J., Schröder, J., Fishbein, M., Pan, Z., Kagan, I.A., Pratt, L.H., Cordonnier-Pratt, M.M., and Duke, S.O. 2008. A functional genomics investigation of allelochemical biosynthesis in Sorghum bicolor root hairs. J. Biol. Chem. 283:3231–3247.

    Article  CAS  PubMed  Google Scholar 

  • Bais, H.P., Sudha, G., George, J., and Ravishankar, G.A. 2001. Influence of exogenous hormones on growth and secondary metabolite production in hairy root cultures of Cichorium intybus L. cv. Lucknow local. In Vitro Cell. Dev. Biol., Plant 37:293–299.

    CAS  Google Scholar 

  • Bhagyalakshmi, N., and Bopanna, K. 1998. Elicitation and immobilization of cell cultures for enhanced synthesis of pharmaceutical compounds. in: I.A. Khan and A. Khanum, Editors, Role of Biotechnology in Medicinal and Aromatic Plants, Ukaaz Publications, India.

    Google Scholar 

  • Breazeale, J.F. 1924. The injurious after-effects of sorghum. J. Am. Soc. Agron. 16:689–700.

    CAS  Google Scholar 

  • Czarnota, M.A., Paul, R.N., Dayan, F.E., Nimbal, C.I., and Weston, L.A. 2001. Mode of action, localization of production, chemical nature, and activity of sorgoleone: a potent PSII inhibitor in Sorghum spp. root exudates. Weed Technol. 15:813–825.

    Article  CAS  Google Scholar 

  • Czarnota M.A., Rimando, A.M., and Weston, L.A. 2003a. Evaluation of seven sorghum (Sorghum sp.) accessions. J. Chem. Ecol. 29:2073–2083.

    Article  CAS  PubMed  Google Scholar 

  • Czarnota, M.A., Paul, R.N., Weston, L.A., and Duke, S.O. 2003b. Anatomy of sorgoleone-secreting root hairs of Sorghum species. Int. J. Plant Sci. 164:861–866.

    Article  Google Scholar 

  • Dayan, F.E. 2006. Factors modulating the levels of the allelochemical sorgoleone in Sorghum bicolor. Planta 224:339–346.

    Article  CAS  PubMed  Google Scholar 

  • Dayan, F.E., Kagan, I.A., and Rimando, A.M. 2003. Elucidation of the biosynthetic pathway of the allelochemical sorgoleone using retrobiosynthetic NMR analysis. J. Biol. Chem. 278:28607–28611.

    Article  CAS  PubMed  Google Scholar 

  • Dayan, F.E., Watson, S.B., and Nanayakkara, N.P.D. 2007. Biosynthesis of lipid resorcinols and benzoquinones in isolated secretory plant root hairs. J. Exp. Bot. 58:3263–3272.

    Article  CAS  PubMed  Google Scholar 

  • Dayan, F.E., Howell, J’L., and Weidenhamer, J.D. 2009. Dynamic root exudation of sorgoleone and its in planta mechanism of action. J. Exp. Bot. 60:2107–2117.

    Article  CAS  PubMed  Google Scholar 

  • Dolan, L. 2001. The role of ethylene in root hair growth in Arabidopsis. J. Plant Nutr. Soil Sci. 164:141–145.

    Article  CAS  Google Scholar 

  • Einhellig, F.A., and Rasmussen, J.A. 1989. Prior cropping with grain sorghum inhibits weeds. J. Chem. Ecol. 15:951–960.

    Article  Google Scholar 

  • Einhellig, F.A., and Souza, I.F. 1992. Phytotoxicity of sorgoleone found in grain sorghum root exudates. J. Chem. Ecol. 18:1–11.

    Article  CAS  Google Scholar 

  • Erickson, J., Schott, D., Reverri, T., Muhsin, W., and Ruttledge, T. 2001. GC-MS analysis of hydrophobic root exudates of sorghum and implications on the parasitic plant Striga asiatica. J. Agric. Food Chem. 49:5537–5542.

    Article  CAS  PubMed  Google Scholar 

  • Fate, G.D., and Lynn, D.G. 1996. Xenognosin methylation is critical in defining the chemical potential gradient that regulates the spatial distribution in Striga pathogenesis. J. Am. Chem. Soc. 118:11369–11376.

    Article  CAS  Google Scholar 

  • Flores, H.E., and Curtis, W.R. 1992. Approaches to understanding and manipulating the biosynthetic potential of plant roots. in: H. Pederson, R. Mutharasan and D. Di Biasio, Editors, Biochemical Engineering VII: Cellular and Reaction Engineering, New York Academy of Sciences, New York.

    Google Scholar 

  • Forney, D.R., Foy, C.L., and Wolf, D.D. 1985. Weed suppression in no-till alfalfa (Medicago sativa) by prior cropping of summer-annual forage grasses. Weed Sci. 33:490–497.

    Google Scholar 

  • Guenzi, W.D., McCalla, T.M., and Norstadt, F.A. 1967. Presence and persistence of phytotoxic substances in wheat, oat, corn, and sorghum residues. Agron. J. 59:163–165.

    CAS  Google Scholar 

  • Hahn, M.G. 1996. Microbial elicitors and their receptors in plants. Annu. Rev. Phytopathol. 34:387–412.

    Article  CAS  PubMed  Google Scholar 

  • Hess, D.E., Ejeta, G., and Butler, L.G. 1992. Selecting sorghum genotypes expressing a quantitative biosynthetic trait that confers resistance to Striga. Phytochemistry 31:493–497.

    Article  CAS  Google Scholar 

  • Hoagland, D.R., and Arnon, D.I. 1950. The water culture method for growing plants without soil. Calif. Agric. Exp. Stn. Circ. 347.

    Google Scholar 

  • Inderjit K.L., and Duke, S.O. 2003. Ecophysiological aspects of allelopathy. Planta 217:529–539.

    Article  CAS  PubMed  Google Scholar 

  • Kagan, I.A., Rimando, A.M., and Dayan, F.E. 2003. Chromatographic separation and in vitro activity of sorgoleone congeners from the roots of Sorghum bicolor. J. Agric. Food Chem. 51:7589–7595.

    Article  CAS  PubMed  Google Scholar 

  • Lehle, F.R., and Putnam, A.R. 1983. Allelopathic potential of sorghum (Sorghum bicolor): isolation of seed germination inhibitors. J. Chem. Ecol. 9:1223–1234.

    Article  CAS  Google Scholar 

  • Lin, H.W., Kwok, K.H., and Doran, P.M. 2003. Development of Linum flavum hairy root cultures for production of coniferin. Biotechnol. Lett. 25:521–525.

    Article  CAS  PubMed  Google Scholar 

  • Luczkiewicz, M., Zarate, R., Dembińska-Migas, W., Migas, P., and Verpoorte, R. 2002. Production of pulchelin E in hairy roots, callus and suspension cultures of Rudbeckia hirta L. Plant Sci. 163:91–100.

    Article  CAS  Google Scholar 

  • Netzly, D.H., and Butler, L.G. 1986. Roots of sorghum exude hydrophobic droplets containing biologically active components. Crop Sci. 26:775–778.

    CAS  Google Scholar 

  • Netzly, D.H., Riopel, J.L., Ejeta, G., and Butler, L.G. 1988. Germination stimulants of witchweed (Striga asiatica) from hydrophobic root exudates of sorghum (Sorghum bicolor). Weed Sci. 36:441–446.

    CAS  Google Scholar 

  • Nimbal, C.I., Pedersen, J.F., Yerkes, C.N., Weston, L.A., and Weller, S.C. 1996. Phytotoxicity and distribution of sorgoleone in grain sorghum germplasm. J. Agric. Food Chem. 44:1343–1347.

    Article  CAS  Google Scholar 

  • Pan, Z., Rimando, A.M., Baerson, S.R., Fishbein, M., and Duke, S.O. 2007. Functional characterization of desaturases involved in the formation of the terminal double bond of an unusual 16:3Δ9, 12, 15 fatty acid isolated from Sorghum bicolor root hairs. J. Biol. Chem. 282:4326–4335.

    Article  CAS  PubMed  Google Scholar 

  • Panasiuk, O., Bills, D.D., and Leather, G.R. 1986. Allelopathic influence of Sorghum bicolor on weeds during germination and early development of seedlings. J. Chem. Ecol. 12:1533–1543.

    Article  Google Scholar 

  • Putnam, A.R., Defrank, J., and Barnes, J.P. 1983. Exploitation of allelopathy for weed control in annual and perennial cropping systems. J. Chem. Ecol. 9:1001–1010.

    Article  Google Scholar 

  • Rhodes, M.J.C., Parr, A.J., Giuletti, A., and Aird, E.L.H. 1994. Influence of exogenous hormones on the growth and secondary metabolite formation in transformed root cultures. Plant Cell Tissue Organ Cult. 38:143–151.

    Article  CAS  Google Scholar 

  • Rimando, A.M., Dayan, F.E., Czarnota, M.A., Weston, L.A., and Duke, S.O. 1998. A new photosystem II electron transfer inhibitor from Sorghum bicolor. J. Nat. Prod. 61:927–930.

    Article  CAS  PubMed  Google Scholar 

  • Rimando, A.M., Dayan, F.E., and Streibig, J.C. 2003. PSII inhibitory activity of resorcinolic lipids from Sorghum bicolor. J. Nat. Prod. 66:42–45.

    Article  CAS  PubMed  Google Scholar 

  • Savitha, B.C., Thimmaraju, R., Bhagyalakshmi, N., and Ravishankar, G.A. 2006. Different biotic and abiotic elicitors influence betalain production in hairy root cultures of Beta vulgaris in shake-flask and bioreactor. Process Biochem. 41:50–60.

    Article  CAS  Google Scholar 

  • Sim, S.J., Chang, H.N., Liu, J.R., and Jung, K.H. 1994. Production and secretion of indole alkaloids in hairy root cultures of Catharanthus roseus: effects of in situ adsorption, fungal elicitation and permeabilization. J. Ferment. Bioeng. 78:229–234.

    Article  CAS  Google Scholar 

  • Singh, G. 1999. Elicitation—manipulating and enhancing secondary metabolite production. in: T.J. Fu, G. Singh and W.R. Curtis, Editors, Plant Cell and Tissue Culture for the Production of Food Ingredients, Kluwer Academic Publishers, New York.

    Google Scholar 

  • Sudha, C.G., Reddy, B.O., Ravishankar, G.A., and Seeni, S. 2003. Production of ajmalicine and ajmaline in hairy root cultures of Rauvolfia micrantha Hook f., a rare and endemic medicinal plant. Biotechnol. Lett. 25:631–636.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, Y., Kono, Y., Inoue, T., and Sakurai, A. 1998. A potent antifungal benzoquinone in etiolated sorghum seedlings and its metabolites. Phytochemistry 47:997–1001.

    Article  CAS  Google Scholar 

  • Teale, W.D., Paponov, I.A., and Palme, K. 2006. Auxin in action: signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 7:847–859.

    Article  CAS  PubMed  Google Scholar 

  • Uddin, M.R., Kim, Y.K., Park, S.U., and Pyon, J.Y. 2009. Herbicidal activity of sorgoleone from grain sorghum root exudates and its contents among sorghum cultivars. Kor. J. Weed Sci. 29:229–236.

    Google Scholar 

  • Weston, L.A. and Czarnota, M.A. 2001. Activity and persistence of sorgoleone, a long-chain hydroquinone produced by Sorghum bicolor. J. Crop Prod. 4:363–377.

    Article  CAS  Google Scholar 

  • Yang, X., Owens, T.G., Scheffler, B.E., and Weston, L.A. 2004. Manipulation of root hair development and sorgoleone production in sorghum seedlings. J. Chem. Ecol. 30:199–213.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B., Ramonell, K., Somerville, S., and Stacey, G. 2002. Characterization of early, chitin-induced gene expression in Arabidopsis. Mol. Plant Microbe Interact. 15:963–970.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We express our gratitude to Dr. Franck E. Dayan for providing the sorgoleone standard. This Study was supported by Technology Development Program for Agriculture, Ministry of Agriculture, Forestry and Foods, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Yeong Pyon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uddin, M.R., Park, K.W., Kim, Y.K. et al. Enhancing Sorgoleone Levels in Grain Sorghum Root Exudates. J Chem Ecol 36, 914–922 (2010). https://doi.org/10.1007/s10886-010-9829-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9829-8

Key Words

Navigation