Journal of Chemical Ecology

, Volume 36, Issue 8, pp 914–922 | Cite as

Enhancing Sorgoleone Levels in Grain Sorghum Root Exudates

  • Md. Romij Uddin
  • Kee Woong Park
  • Yong Kyoung Kim
  • Sang Un Park
  • Jong Yeong Pyon


Sorgoleone, found in the root exudates of sorghum [(Sorghum bicolor (L.) Moench], has been a subject of continued research. Sorgoleone production in grain sorghum roots was investigated under different growth conditions. Methanol was the most effective solvent for extracting sorgoleone from grain sorghum roots. Sorgoleone production is high in young developing plants. The maximum concentration (μg mg−1 root dry weight) was produced in 5-d-old seedlings; beyond this age, production declined. However, considering both root weight and sorgoleone content per seedling, 10-d-old seedlings had the highest total amounts (μg). Compared with the control, sorgoleone content increased 6.1, 8.6, and 14.2 times when sorghum seeds were treated with auxins, Hoagland solution, and a combination of auxins and Hoagland solution, respectively. Among the innate immunity response elicitors, cellulose (an elicitor of plant origin) stimulated higher sorgoleone production than the others, and it produced 6.2 times more sorgoleone than the control. Combined treatment of sorghum seeds with half strength Hoagland solution and 5 μg ml−1 of IBA significantly increased both root growth and sorgoleone content in sorghum seedlings.

Key Words

Auxin Biosynthesis Elicitor Nutrient solution Sorgoleone 



We express our gratitude to Dr. Franck E. Dayan for providing the sorgoleone standard. This Study was supported by Technology Development Program for Agriculture, Ministry of Agriculture, Forestry and Foods, Republic of Korea.


  1. Alsaadawi, I.S., Al-Uqaili, J.K., Alrubeaa, A.J., and Al-Hadithy, S.M. 1986. Allelopathic suppression of weed and nitrification by selected cultivars of Sorghum bicolor (L.) Moench. J. Chem. Ecol. 12:209–219.CrossRefGoogle Scholar
  2. Arroo, R.R.J., Develi, A., Meijers, H., Van de Westerlo, E., Kemp, A.K., Croes, A.F., and Wullems, G.J. 1995. Effects of exogenous auxin on root morphology and secondary metabolism in Tagetes patula hairy root cultures. Physiol. Plant. 93:233–240.CrossRefGoogle Scholar
  3. Baerson, S.R., Dayan, F.E., Rimando, A.M., Nanayakkara, N.P.D., Liu, C.J., Schröder, J., Fishbein, M., Pan, Z., Kagan, I.A., Pratt, L.H., Cordonnier-Pratt, M.M., and Duke, S.O. 2008. A functional genomics investigation of allelochemical biosynthesis in Sorghum bicolor root hairs. J. Biol. Chem. 283:3231–3247.CrossRefPubMedGoogle Scholar
  4. Bais, H.P., Sudha, G., George, J., and Ravishankar, G.A. 2001. Influence of exogenous hormones on growth and secondary metabolite production in hairy root cultures of Cichorium intybus L. cv. Lucknow local. In Vitro Cell. Dev. Biol., Plant 37:293–299.Google Scholar
  5. Bhagyalakshmi, N., and Bopanna, K. 1998. Elicitation and immobilization of cell cultures for enhanced synthesis of pharmaceutical compounds. in: I.A. Khan and A. Khanum, Editors, Role of Biotechnology in Medicinal and Aromatic Plants, Ukaaz Publications, India.Google Scholar
  6. Breazeale, J.F. 1924. The injurious after-effects of sorghum. J. Am. Soc. Agron. 16:689–700.Google Scholar
  7. Czarnota, M.A., Paul, R.N., Dayan, F.E., Nimbal, C.I., and Weston, L.A. 2001. Mode of action, localization of production, chemical nature, and activity of sorgoleone: a potent PSII inhibitor in Sorghum spp. root exudates. Weed Technol. 15:813–825.CrossRefGoogle Scholar
  8. Czarnota M.A., Rimando, A.M., and Weston, L.A. 2003a. Evaluation of seven sorghum (Sorghum sp.) accessions. J. Chem. Ecol. 29:2073–2083.CrossRefPubMedGoogle Scholar
  9. Czarnota, M.A., Paul, R.N., Weston, L.A., and Duke, S.O. 2003b. Anatomy of sorgoleone-secreting root hairs of Sorghum species. Int. J. Plant Sci. 164:861–866.CrossRefGoogle Scholar
  10. Dayan, F.E. 2006. Factors modulating the levels of the allelochemical sorgoleone in Sorghum bicolor. Planta 224:339–346.CrossRefPubMedGoogle Scholar
  11. Dayan, F.E., Kagan, I.A., and Rimando, A.M. 2003. Elucidation of the biosynthetic pathway of the allelochemical sorgoleone using retrobiosynthetic NMR analysis. J. Biol. Chem. 278:28607–28611.CrossRefPubMedGoogle Scholar
  12. Dayan, F.E., Watson, S.B., and Nanayakkara, N.P.D. 2007. Biosynthesis of lipid resorcinols and benzoquinones in isolated secretory plant root hairs. J. Exp. Bot. 58:3263–3272.CrossRefPubMedGoogle Scholar
  13. Dayan, F.E., Howell, J’L., and Weidenhamer, J.D. 2009. Dynamic root exudation of sorgoleone and its in planta mechanism of action. J. Exp. Bot. 60:2107–2117.CrossRefPubMedGoogle Scholar
  14. Dolan, L. 2001. The role of ethylene in root hair growth in Arabidopsis. J. Plant Nutr. Soil Sci. 164:141–145.CrossRefGoogle Scholar
  15. Einhellig, F.A., and Rasmussen, J.A. 1989. Prior cropping with grain sorghum inhibits weeds. J. Chem. Ecol. 15:951–960.CrossRefGoogle Scholar
  16. Einhellig, F.A., and Souza, I.F. 1992. Phytotoxicity of sorgoleone found in grain sorghum root exudates. J. Chem. Ecol. 18:1–11.CrossRefGoogle Scholar
  17. Erickson, J., Schott, D., Reverri, T., Muhsin, W., and Ruttledge, T. 2001. GC-MS analysis of hydrophobic root exudates of sorghum and implications on the parasitic plant Striga asiatica. J. Agric. Food Chem. 49:5537–5542.CrossRefPubMedGoogle Scholar
  18. Fate, G.D., and Lynn, D.G. 1996. Xenognosin methylation is critical in defining the chemical potential gradient that regulates the spatial distribution in Striga pathogenesis. J. Am. Chem. Soc. 118:11369–11376.CrossRefGoogle Scholar
  19. Flores, H.E., and Curtis, W.R. 1992. Approaches to understanding and manipulating the biosynthetic potential of plant roots. in: H. Pederson, R. Mutharasan and D. Di Biasio, Editors, Biochemical Engineering VII: Cellular and Reaction Engineering, New York Academy of Sciences, New York.Google Scholar
  20. Forney, D.R., Foy, C.L., and Wolf, D.D. 1985. Weed suppression in no-till alfalfa (Medicago sativa) by prior cropping of summer-annual forage grasses. Weed Sci. 33:490–497.Google Scholar
  21. Guenzi, W.D., McCalla, T.M., and Norstadt, F.A. 1967. Presence and persistence of phytotoxic substances in wheat, oat, corn, and sorghum residues. Agron. J. 59:163–165.Google Scholar
  22. Hahn, M.G. 1996. Microbial elicitors and their receptors in plants. Annu. Rev. Phytopathol. 34:387–412.CrossRefPubMedGoogle Scholar
  23. Hess, D.E., Ejeta, G., and Butler, L.G. 1992. Selecting sorghum genotypes expressing a quantitative biosynthetic trait that confers resistance to Striga. Phytochemistry 31:493–497.CrossRefGoogle Scholar
  24. Hoagland, D.R., and Arnon, D.I. 1950. The water culture method for growing plants without soil. Calif. Agric. Exp. Stn. Circ. 347.Google Scholar
  25. Inderjit K.L., and Duke, S.O. 2003. Ecophysiological aspects of allelopathy. Planta 217:529–539.CrossRefPubMedGoogle Scholar
  26. Kagan, I.A., Rimando, A.M., and Dayan, F.E. 2003. Chromatographic separation and in vitro activity of sorgoleone congeners from the roots of Sorghum bicolor. J. Agric. Food Chem. 51:7589–7595.CrossRefPubMedGoogle Scholar
  27. Lehle, F.R., and Putnam, A.R. 1983. Allelopathic potential of sorghum (Sorghum bicolor): isolation of seed germination inhibitors. J. Chem. Ecol. 9:1223–1234.CrossRefGoogle Scholar
  28. Lin, H.W., Kwok, K.H., and Doran, P.M. 2003. Development of Linum flavum hairy root cultures for production of coniferin. Biotechnol. Lett. 25:521–525.CrossRefPubMedGoogle Scholar
  29. Luczkiewicz, M., Zarate, R., Dembińska-Migas, W., Migas, P., and Verpoorte, R. 2002. Production of pulchelin E in hairy roots, callus and suspension cultures of Rudbeckia hirta L. Plant Sci. 163:91–100.CrossRefGoogle Scholar
  30. Netzly, D.H., and Butler, L.G. 1986. Roots of sorghum exude hydrophobic droplets containing biologically active components. Crop Sci. 26:775–778.Google Scholar
  31. Netzly, D.H., Riopel, J.L., Ejeta, G., and Butler, L.G. 1988. Germination stimulants of witchweed (Striga asiatica) from hydrophobic root exudates of sorghum (Sorghum bicolor). Weed Sci. 36:441–446.Google Scholar
  32. Nimbal, C.I., Pedersen, J.F., Yerkes, C.N., Weston, L.A., and Weller, S.C. 1996. Phytotoxicity and distribution of sorgoleone in grain sorghum germplasm. J. Agric. Food Chem. 44:1343–1347.CrossRefGoogle Scholar
  33. Pan, Z., Rimando, A.M., Baerson, S.R., Fishbein, M., and Duke, S.O. 2007. Functional characterization of desaturases involved in the formation of the terminal double bond of an unusual 16:3Δ9, 12, 15 fatty acid isolated from Sorghum bicolor root hairs. J. Biol. Chem. 282:4326–4335.CrossRefPubMedGoogle Scholar
  34. Panasiuk, O., Bills, D.D., and Leather, G.R. 1986. Allelopathic influence of Sorghum bicolor on weeds during germination and early development of seedlings. J. Chem. Ecol. 12:1533–1543.CrossRefGoogle Scholar
  35. Putnam, A.R., Defrank, J., and Barnes, J.P. 1983. Exploitation of allelopathy for weed control in annual and perennial cropping systems. J. Chem. Ecol. 9:1001–1010.CrossRefGoogle Scholar
  36. Rhodes, M.J.C., Parr, A.J., Giuletti, A., and Aird, E.L.H. 1994. Influence of exogenous hormones on the growth and secondary metabolite formation in transformed root cultures. Plant Cell Tissue Organ Cult. 38:143–151.CrossRefGoogle Scholar
  37. Rimando, A.M., Dayan, F.E., Czarnota, M.A., Weston, L.A., and Duke, S.O. 1998. A new photosystem II electron transfer inhibitor from Sorghum bicolor. J. Nat. Prod. 61:927–930.CrossRefPubMedGoogle Scholar
  38. Rimando, A.M., Dayan, F.E., and Streibig, J.C. 2003. PSII inhibitory activity of resorcinolic lipids from Sorghum bicolor. J. Nat. Prod. 66:42–45.CrossRefPubMedGoogle Scholar
  39. Savitha, B.C., Thimmaraju, R., Bhagyalakshmi, N., and Ravishankar, G.A. 2006. Different biotic and abiotic elicitors influence betalain production in hairy root cultures of Beta vulgaris in shake-flask and bioreactor. Process Biochem. 41:50–60.CrossRefGoogle Scholar
  40. Sim, S.J., Chang, H.N., Liu, J.R., and Jung, K.H. 1994. Production and secretion of indole alkaloids in hairy root cultures of Catharanthus roseus: effects of in situ adsorption, fungal elicitation and permeabilization. J. Ferment. Bioeng. 78:229–234.CrossRefGoogle Scholar
  41. Singh, G. 1999. Elicitation—manipulating and enhancing secondary metabolite production. in: T.J. Fu, G. Singh and W.R. Curtis, Editors, Plant Cell and Tissue Culture for the Production of Food Ingredients, Kluwer Academic Publishers, New York.Google Scholar
  42. Sudha, C.G., Reddy, B.O., Ravishankar, G.A., and Seeni, S. 2003. Production of ajmalicine and ajmaline in hairy root cultures of Rauvolfia micrantha Hook f., a rare and endemic medicinal plant. Biotechnol. Lett. 25:631–636.CrossRefPubMedGoogle Scholar
  43. Suzuki, Y., Kono, Y., Inoue, T., and Sakurai, A. 1998. A potent antifungal benzoquinone in etiolated sorghum seedlings and its metabolites. Phytochemistry 47:997–1001.CrossRefGoogle Scholar
  44. Teale, W.D., Paponov, I.A., and Palme, K. 2006. Auxin in action: signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 7:847–859.CrossRefPubMedGoogle Scholar
  45. Uddin, M.R., Kim, Y.K., Park, S.U., and Pyon, J.Y. 2009. Herbicidal activity of sorgoleone from grain sorghum root exudates and its contents among sorghum cultivars. Kor. J. Weed Sci. 29:229–236.Google Scholar
  46. Weston, L.A. and Czarnota, M.A. 2001. Activity and persistence of sorgoleone, a long-chain hydroquinone produced by Sorghum bicolor. J. Crop Prod. 4:363–377.CrossRefGoogle Scholar
  47. Yang, X., Owens, T.G., Scheffler, B.E., and Weston, L.A. 2004. Manipulation of root hair development and sorgoleone production in sorghum seedlings. J. Chem. Ecol. 30:199–213.CrossRefPubMedGoogle Scholar
  48. Zhang, B., Ramonell, K., Somerville, S., and Stacey, G. 2002. Characterization of early, chitin-induced gene expression in Arabidopsis. Mol. Plant Microbe Interact. 15:963–970.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Md. Romij Uddin
    • 1
  • Kee Woong Park
    • 2
  • Yong Kyoung Kim
    • 1
  • Sang Un Park
    • 1
  • Jong Yeong Pyon
    • 1
  1. 1.Department of AgronomyChungnam National UniversityDaejeonKorea
  2. 2.Bio-Evaluation CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)Cheongwon-gunKorea

Personalised recommendations