Advertisement

Journal of Chemical Ecology

, Volume 36, Issue 8, pp 824–833 | Cite as

2,3-Dihydrohomofarnesal: Female Sex Attractant Pheromone Component of Callosobruchus rhodesianus (Pic)

  • Kenji Shimomura
  • Hiroyuki Koshino
  • Arata Yajima
  • Noriko Matsumoto
  • Yuuma Kagohara
  • Koichi Kamada
  • Shunsuke Yajima
  • Kanju Ohsawa
Article

Abstract

Callosobruchus rhodesianus (Pic) (Coleoptera: Chrysomelidae: Bruchinae) is a pest of stored legumes through the Afro-tropical region. In laboratory bioassays, males of C. rhodesianus were attracted to volatiles collected from virgin females. Collections were purified by various chromatographic techniques, and the biologically active component isolated using gas chromatographic-electroantennographic detection analysis. Gas chromatography-mass spectrometry and NMR analyses suggested that the active compound was 2,3-dihydrohomofarnesal, i.e., 7-ethyl-3,11-dimethyl-6,10-dodecadienal. The structure was confirmed by non-stereoselective and enantioselective total synthesis. Using chiral gas chromatography, the absolute configuration of the natural compound was confirmed as (3S,6E)-7-ethyl-3,11-dimethyl-6,10-dodecadienal. Y-tube olfactomter assays showed that only the (S)-enantiomer attracted males of C. rhodesianus. The (R)-enantiomer and racemate did not attract males, suggesting that the (R)-enantiomer inhibits the activity of the natural compound. In combination with previous reports about sex attractant pheromones of congeners, we suggest that a saltational shift of the pheromone structure arose within the genus Callosobruchus.

Key Words

Callosobruchus rhodesianus 2,3-Dihydrohomofarnesal (3S,6E)-7-Ethyl-3,11-dimethyl-6,10-dodecadienal GC-EAD Seed beetle Sex attractant pheromone Saltational shift 

Notes

Acknowledgements

The authors are grateful to Takasago International Co. for kind gifts of both enantiomers of citronellal. We thank Dr. Takane Fujimori (Tokyo University of Agriculture) for his advice on the structural analysis.

References

  1. Baker, T. C. 2002. Mechanism for saltational shifts in pheromone communication systems. Proc. Natl. Acad. Sci. USA 99:13368–13370.CrossRefPubMedGoogle Scholar
  2. Bartschat, D., Kuntzsch, C., Heil, M., Schittrigkeit, A., Schumacher, K., Mang, M., Mosandl, A., and Kaiser, R. 1997. Chiral compounds of essential oils XXI: (E,Z)-2,3-dihydrofarnesals–chirospecific analysis and structure elucidation of the stereoisomers. Phytochem. Anal. 8:159–166.CrossRefGoogle Scholar
  3. Booker, R. H. 1967. Observations on three bruchids associated with cowpea in northern Nigeria. J. Stored Prod. Res. 3:1–15.CrossRefGoogle Scholar
  4. Borowiec, L. 1987. The genera of seed-beetles (Coleoptera: Bruchidae). Pol. Pis. Entomol. 57:3–207.Google Scholar
  5. Brestensky, D. M., and Stryker, J. M. 1989. Regioselective conjugate reduction and reductive silylation of α,β-unsaturated aldehydes using [(Ph3P)CuH]. Tetrahedron Lett. 30:5677–5680.CrossRefGoogle Scholar
  6. Cardé, R. T., and Haynes, K. F. 2004. Structure of the Pheromone Communication Channel in Moths, pp. 283–332, in R. T. Cardé and J. G. Millar (eds.). Advances in Insect Chemical Ecology. Cambriddge, UK.CrossRefGoogle Scholar
  7. Cork, A., Hall, D. R., Blaney, W. M., and Simmonds, M. S. J. 1991. Identification of a component of the female sex pheromone of Callosobruchus analis (Coleoptera: Bruchidae). Tetrahedron Lett. 32:129–132.CrossRefGoogle Scholar
  8. Dess, D. B., and Martin, J. C. 1983. Readily accessible 12-I-5 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. J. Org. Chem. 48:4155–4156.CrossRefGoogle Scholar
  9. Giga, D. P., and Smith, R. H. 1983. Comparative life history studies of four Callosobruchus species infesting cowpeas with special reference to Callosobruchus rhodesianus (Pic) (Coleoptera: Bruchidae). J. Stored Prod. Res. 19:189–198.CrossRefGoogle Scholar
  10. Morgan, E. D. 1999. Terpenes, pp. 85–103, in E. D. Morgan (ed.). Biosynthesis in Insects. The Royal Society of Chemistry, Milton Road, Cambridge.Google Scholar
  11. Mori, K. 2007. Significance of chirality in pheromone science. Bioorg. Med. Chem. 15:7505–7523.CrossRefPubMedGoogle Scholar
  12. Nojima, S., Kiemle, D. J., Webster, F. X., and Roelofs, W. L. 2004. Submicro scale NMR sample preparation for volatile chemicals. J. Chem. Ecol. 30:2153–2161.CrossRefPubMedGoogle Scholar
  13. Nojima, S., Apperson, C. S., and Schal, C. 2008. A simple, convenient, and efficient preparative GC system that uses a short megabore capillary column as a trap. J. Chem. Ecol. 34:418–428.CrossRefPubMedGoogle Scholar
  14. Phillips, T. W., Phillips, J. K., Webster, F. X., Tang, R., and Burkholder, W. E. 1996. Identification of sex pheromones from cowpea weevil, Callosobruchus maculatus, and related studies with C. analis (Coleoptera: Bruchidae). J. Chem. Ecol. 22:2233–2249.CrossRefGoogle Scholar
  15. Pichlmair, S., De Lera Ruiz, M., Vilotijevic, I., and Paquette, L. A. 2006. Exploration of conjugate addition routes to advanced tricyclic components of mangicol A. Tetrahedron 62:5791–5802.CrossRefGoogle Scholar
  16. Rees, D. P. 1996. Coleoptera, pp. 1–40, in B. Subramanyam and D. W. Hagstrum (eds.). Integrated Management of Insects in Stored Products. Marcel Dekker, Madison Avenue, New York, USA.Google Scholar
  17. Rees, D. P. 2004. Beetles (Order: Coleoptera), pp. 11–120, in D. P. Rees (ed.). Insects of Stored Products. CSIRO Publishing, Canberra, Australia.Google Scholar
  18. Roelofs, W. L., and Brown, R. L. 1982. Pheromones and Evolutionary Relationships of Tortricidae. Annu. Rev. Ecol. Syst. 13:395–422.CrossRefGoogle Scholar
  19. Seybold, S. J., Bohlmann, J., and Raffa, K. F. 2000. Biosynthesis of coniferophagous bark beetle pheromones and conifer isoprenoids: evolutionary perspective and synthesis. Can. Entomol. 132:697–753.CrossRefGoogle Scholar
  20. Shimomura, K., Nojima, S., Yajima, S., and Ohsawa, K. 2008. Homofarnesals: female sex attractant pheromone components of the southern cowpea weevil, Callosobruchus chinensis. J. Chem. Ecol. 34:467–477.CrossRefPubMedGoogle Scholar
  21. Shu, S., Mbata, G. N., Cork, A., and Ramaswamy, S. B. 1999. Sex pheromone of Callosobruchus subinnotatus. J. Chem. Ecol. 25:2715–2727.CrossRefGoogle Scholar
  22. Siegel, S. 1956. The one-sample case, pp. 35–60, in S. Siegel (ed.). Nonparametric Statistics for the Behavioral Science. McGrawHill, New York.Google Scholar
  23. Skaife, S. H. 1926. The bionomics of the Brucidae. S. Afr. J. Sci. 23:575–588.Google Scholar
  24. Southgate, B. J. 1958. Systematic notes on species of Callosobruchus of economic importance. Bull. Entomol. Res. 49:591–599.CrossRefGoogle Scholar
  25. Southgate, B. J. 1979. Biology of the Bruchidae. Annu. Rev. Entomol. 24:449–473.CrossRefGoogle Scholar
  26. Symonds, M. R. E., and Elgar, M. A. 2004. The mode of pheromone evolution: evidence from bark beetles. Proc. R. Soc. B-Biol. Sci. 271:839–846.CrossRefGoogle Scholar
  27. Symonds, M. R. E., and Elgar, M. A. 2008. The evolution of pheromone diversity. Trends Ecol. Evol. 23:220–228.CrossRefPubMedGoogle Scholar
  28. Tuda, M., Rönn, J., Buranapanichpan, S., Wasano, N., and Arnqvist, G., 2006. Evolutionary diversification of the bean beetle genus Callosobruchus (Coleoptera: Bruchidae): traits associated with stored-product pest status. Mol. Ecol. 15:3541–3551.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kenji Shimomura
    • 1
  • Hiroyuki Koshino
    • 2
  • Arata Yajima
    • 3
  • Noriko Matsumoto
    • 1
  • Yuuma Kagohara
    • 3
  • Koichi Kamada
    • 1
  • Shunsuke Yajima
    • 1
  • Kanju Ohsawa
    • 1
  1. 1.Department of Biosciences, Faculty of Applied BioscienceTokyo University of AgricultureTokyoJapan
  2. 2.Chemical Biology Core Facility, Advanced Science InstituteRIKENSaitamaJapan
  3. 3.Department of Fermentation Science, Faculty of Applied BioscienceTokyo University of AgricultureTokyoJapan

Personalised recommendations