Journal of Chemical Ecology

, Volume 35, Issue 12, pp 1437–1447 | Cite as

Identification of a Sex Attractant Pheromone for Male Winterform Pear Psylla, Cacopsylla pyricola

  • Christelle Guédot
  • Jocelyn G. Millar
  • David R. Horton
  • Peter J. Landolt


Pear psylla, Cacopsylla pyricola (Förster) (Hemiptera: Psyllidae), a major economic pest of pears, uses a female-produced sex attractant pheromone. We compared the chemical profiles obtained from cuticular extracts of diapausing and post-diapause winterform males and females to isolate and identify the pheromone. Post-diapause females produced significantly more of the cuticular hydrocarbon, 13-methylheptacosane, than post-diapause males and diapausing females. In olfactometer assays, conspecific males were attracted to synthetic racemic 13-methylheptacosane, whereas females were not, indicating that the behavioral response to this chemical is sex-specific. Furthermore, 13-methylheptacosane was as attractive to males as a cuticular extract of females, suggesting that this chemical was largely responsible for the female attractiveness. A field study showed that males but not females were attracted to 13-methylheptacosane, confirming the olfactometer results. This study provides evidence that 13-methylheptacosane is a sex attractant pheromone for C. pyricola winterform males. This is the first identification of a sex pheromone in the Psylloidea. Our results open the path to developing monitoring tools and possibly new strategies for integrated pest management of this insect.


Hemiptera Psyllidae Sex attraction Mate location Olfactometer Cuticular extracts Cuticular hydrocarbons Diapause 



We are grateful to Deb Broers and Merilee Bayer for conducting olfactometer and field assays and to Bonnie Ohler and J. Steven McElfresh for their assistance with the chemistry. We are also grateful to Erik Wenninger, David Hall, and two anonymous reviewers for their comments. This research was supported by Research Grant Award No. US-4048-07 from the United States - Israel Binational Agricultural Research and Development Fund (BARD), USDA-CSREES-NRI (2006-35302-17475), and the Washington Tree Fruit Research Commission (PR-05-504).


  1. Benoit, J. B. and Denlinger, D. L. 2007. Suppression of water loss during adult diapause in the northern house mosquito, Culex pipiens. J. Exp. Biol. 210:217–226.CrossRefPubMedGoogle Scholar
  2. Brown, R. L., Landolt, P. J., Horton, D. R., and Zack, R. S. 2009. Attraction of Cacopsylla pyricola (Hemiptera: Psyllidae) to female psylla in pear orchards. Environ. Entomol. 38:815–822.CrossRefPubMedGoogle Scholar
  3. Burckhardt, D. 1994. Psylloid pests of temperate and subtropical crop and ornamental plants (Hemiptera, Psylloidea): A review. Trends Agric. Sci. Entomol. 2:173–186.Google Scholar
  4. Carlson, D. A., Bernier, U. R., and Sutton, B. D. 1998. Elution patterns from capillary GC for methyl-branched hydrocarbons. J. Chem. Ecol. 24:1845–1865.CrossRefGoogle Scholar
  5. Do Nascimento, R. R., Jackson, B. D., Morgan, E. D., Clark, W. H., and Blom, P. E. 1993. Chemical secretions of two sympatric harvester ants, Pogonomyrmex salinus and Messor lobognathus. J. Chem. Ecol. 19:1993–2005.CrossRefGoogle Scholar
  6. Ginzel, M. D., Millar, J. G., and Hanks, L. M. 2003. (Z)-9-Pentacosene—contact sex pheromone of the locust borer, Megacyllene robiniae. Chemoecology 13:135–141.CrossRefGoogle Scholar
  7. Grula, J. W. and Taylor, O. R. Jr. 1979. The inheritance of pheromone production in the sulfur butterflies Colias eurytheme and C. philodice. Heredity 42:359–371.CrossRefGoogle Scholar
  8. Grula, J. W., McChesney, J. D., and Taylor, O. R. Jr. 1980. Aphrodisiac pheromones of the sulfur butterflies Colias eurytheme and C. philodice (Lepidoptera, Pieridae). J. Chem. Ecol. 6:241–256.CrossRefGoogle Scholar
  9. Guédot, C., Horton, D. R., and Landolt, P. J. 2009. Attraction of male winterform pear psylla to female-produced volatiles and to female extracts and evidence of male-male repellency. Entomol. Exp. Appl. 130:191–197.CrossRefGoogle Scholar
  10. Haverty, M. I., Grace, J. K., Nelson, L. J., and Yamamoto, R. T. 1996. Intercaste, intercolony, and temporal variation in cuticular hydrocarbons of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). J. Chem. Ecol. 22:1813–1834.CrossRefGoogle Scholar
  11. Hinkens, D. M., McElfresh, J. S., and Millar, J. G. 2001. Identification and synthesis of the sex pheromone of the vine mealybug, Planococcus ficus. Tetrahedron Lett. 42:1619–1621.CrossRefGoogle Scholar
  12. Horton, D. R., and Landolt, P. J. 2007. Attraction of male pear psylla, Cacopsylla pyricola, to female-infested pear shoots. Entomol. Exp. Appl. 123:177–183.CrossRefGoogle Scholar
  13. Horton, D. R., Broers, D. A., Hinojosa, T., and Lewis, T. M. 1998. Ovarian development in overwintering pear psylla, Cacopsylla pyricola (Homoptera: Psyllidae): seasonality and effects of photoperiod. Can. Entomol. 130:859–867.CrossRefGoogle Scholar
  14. Horton, D. R., Guédot, C., and Landolt, P. J. 2007. Diapause status of females affects attraction of male pear psylla, Cacopsylla pyricola, to volatiles from female-infested pear shoots. Entomol. Exp. Appl. 123:185–192.CrossRefGoogle Scholar
  15. Horton, D. R., Guédot, C., and Landolt, P. J. 2008. Attraction of male summerform pear psylla to volatiles from female pear psylla: effects of female age, mating status, and presence of host plant. Can. Entomol. 140:184–191.CrossRefGoogle Scholar
  16. Howard, R. W. 1993. Cuticular hydrocarbons and chemical communication, pp. 179–226 in D. W. Stanley-Samuelson, D. R. Nelson (eds.). Insects Lipids: Chemistry, Biochemistry and Biology. University of Nebraska Press, Lincoln.Google Scholar
  17. Howard, R. W. and Blomquist, G. J. 1982. Chemical ecology and biochemistry of insect hydrocarbons. Annu. Rev. Entomol. 27:149–172.CrossRefGoogle Scholar
  18. Howard, R. W. and Blomquist, G. J. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50:371–393.CrossRefPubMedGoogle Scholar
  19. Jurenka, R. A., Holland, D., and Krafsur, E. S. 1998. Hydrocarbon profiles of diapausing and reproductive adult face flies (Musca autumnalis). Arch. Insect Biochem. Physiol. 37:206–214.CrossRefGoogle Scholar
  20. Krysan, J. L. and Higbee, B. S. 1990. Seasonality of mating and ovarian development in overwintering Cacopsylla pyricola (Homoptera: Psyllidae). Environ. Entomol. 19:544–550.Google Scholar
  21. Lanier, G. N., Qi, Y. -T., West, J. R., Park, S. C., Webster, F. X., and Silverstein, R. M. 1989. Identification of the sex pheromone of three Matsucoccus pine bast scales. J. Chem. Ecol. 15:1645–1659.CrossRefGoogle Scholar
  22. Liepert, C. and Dettner, K. 1996. Role of cuticular hydrocarbons of aphid parasitoids in their relationship to aphid-attending ants. J. Chem. Ecol. 22:695–707.CrossRefGoogle Scholar
  23. Lockey, K. H. 1988. Lipids of the insect cuticle: Origin, composition, and function. Comp. Biochem. Physiol. 89B:595–645.Google Scholar
  24. Marukawa, K., Takikawa, H., and Mori, K. 2001. Synthesis of the enantiomers of some methyl-branched cuticular hydrocarbons of the ant, Diacamma sp. Biosci. Biotechnol. Biochem. 65:305–314.CrossRefPubMedGoogle Scholar
  25. Nelson, D. R. 1978. Long-chain methyl-branched hydrocarbons: Occurrence, biosynthesis, and function, pp. 1–33, in J. E. Treherne (ed.). Advances in Insect Physiology Volume 13. Academic, London.CrossRefGoogle Scholar
  26. Nelson, D. R. 1993. Methyl-branched lipids in insects, pp. 271–315, in D. W. Stanley-Samuelson and D. R. Nelson (eds.). Insect lipids: Chemistry, Biochemistry and Biology. University of Nebraska Press, Lincoln.Google Scholar
  27. Nelson, D. R., and Blomquist, G. J. 1995. Insect waxes, pp. 1–90, in: R. J. Hamilton (ed.), Waxes: Chemistry, Molecular Biology and Function. The Oily, Dundee.Google Scholar
  28. Oldfield, G. N. 1970. Diapause and polymorphism in California populations of Psylla pyricola (Homoptera: Psyllidae). Ann. Entomol. Soc. Am. 63:180–184.Google Scholar
  29. Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 1992. The chemical ecology of aphids. Annu. Rev. Entomol. 37:67–90.CrossRefGoogle Scholar
  30. Rodríguez, L. C., Faúndez, E. H., and Niemeyer, H. M. 2005. Mate searching in the scale insect, Dactylopius coccus (Hemiptera: Coccoidea: Dactylopiidae). Eur. J. Entomol. 102:305–306.Google Scholar
  31. SAS Institute. 2002. SAS 9.1 for Windows. SAS Institute, Cary.Google Scholar
  32. Singer, T. L. 1998. Role of hydrocarbons in the recognition systems of insects. Amer. Zool. 38:394–405.Google Scholar
  33. Singer, T. L., Camann, M. A., and Espelie, K. E. 1992. Discriminant analysis of cuticular hydrocarbons of social wasp Polistes exclamans Viereck and surface hydrocarbons of its nest paper and pedicel. J. Chem. Ecol. 18:785–797.CrossRefGoogle Scholar
  34. Soroker, V., Talebaev, S., Harari, A. R., and Wesley, S. D. 2004. The role of chemical cues in host and mate location in the pear psylla Cacopsylla bidens (Homptera: Psyllidae). J. Insect Behav. 17:613–626.CrossRefGoogle Scholar
  35. Subchev, M., and Jurenka, R. A. 2001. Sex pheromone levels in pheromone glands and identification of the pheromone and hydrocarbons in the hemolymph of the moth Scoliopteryx libatrix L. (Lepidoptera: Noctuidae). Arch. Insect Biochem. Physiol. 47:35–43.CrossRefPubMedGoogle Scholar
  36. Wenninger, E. J., Stelinski, L. L., and Hall, D. G. 2008. Behavioral evidence for a female-produced sex attractant in Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Entomol. Exp. Appl. 128:450–459.CrossRefGoogle Scholar
  37. Wong, T. T. Y., and Madsen, H. F. 1967. Laboratory and field studies on the seasonal forms of pear psylla in Northern California. J. Econ. Entomol. 60:163–168.Google Scholar
  38. Yin, L. T., and Maschwitz, U. 1983. Sexual pheromone in the green house whitefly Trialeurodes vaporiariorum. Zeitsch. Angew. Entomol. 95:439–446.Google Scholar
  39. Zar, J. H. 1999. Biostatistical Analysis, 4th edn. Prentice Hall, New Jersey.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Christelle Guédot
    • 1
  • Jocelyn G. Millar
    • 2
  • David R. Horton
    • 1
  • Peter J. Landolt
    • 1
  1. 1.U.S. Department of AgricultureAgricultural Research ServiceWapatoUSA
  2. 2.Department of EntomologyUniversity of CaliforniaRiversideUSA

Personalised recommendations