Journal of Chemical Ecology

, 35:1320 | Cite as

Hydrocarbon Footprints as a Record of Bumblebee Flower Visitation



Bumblebees leave traces of cuticular hydrocarbons on flowers they visit, with the amount deposited being positively related to the number of visits. We asked whether such footprint hydrocarbons are retained on flowers for sufficiently long periods of time so as to reflect bee visitation in pollination studies. In laboratory experiments, flower corollae (Primula veris, Digitalis grandiflora) visited by Bombus terrestris workers retained bee-derived nonacosenes (C29H58) in near-unchanged quantities for 24 hours, both at 15 and 25°C. Additionally, synthetic (Z)-9-tricosene applied to flower corollae of the deadnettle Lamium maculatum was retained for 48 hours in an unchanged quantity. In a field survey, the amount of footprint alkenes on flowers of comfrey (Symphytum officinale) plants was positively correlated with the number of bumblebee visits that those plants had received during the day. Together, these data suggest that flowers retain a long-term quantitative record of bumblebee visitation. The analysis of petal extracts by gas chromatography could provide a cheap and reliable way of quantifying bumblebee visits in landscape scale studies of pollination.


Cuticular hydrocarbons Cuticular lipids Footprints Bombus Scent-marks Flower visit Pollination Pollinator decline 



We thank Klaus Lunau and the members of the Sensory Ecology Group for discussions and comments on the manuscript, and the participants of the 2007 Sensory Ecology course for their help and endurance during the wild comfrey survey. A special thanks to Andreas Fischbach and Wilhelm Rogmann of the Botanical Garden of the University of Düsseldorf for maintaining the plants, as well as Waldemar Seidel of the Feinmechanikerwerkstatt of the University of Düsseldorf for the production of the bumblebees´ nest- and feeding boxes. This study was funded by the DFG grant EL249/3 and the University of Düsseldorf.


  1. Bonavitacougourdan, A., Theraulaz, G., Bagneres, A. G., Roux, M., Pratte, M., Provost, E., and Clement, J. L. 1991. Cuticular hydrocarbons, social-organization and ovarian development in a polistine wasp — Polistes dominulus christ. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 100:667–680.CrossRefGoogle Scholar
  2. Butler, C. G., Fletcher, D. J., and Watler, D. 1969. Nest-entrance marking with pheromones by honeybee-Apis mellifera l. and by a wasp Vespula vulgaris l. Anim. Behav. 17:142–147.CrossRefGoogle Scholar
  3. COMPULIGHTS GmbH. 2005. Clbehave. Version 1.00. Mönchengladbach.Google Scholar
  4. Dani, F. R., Jones, G. R., Corsi, S., Beard, R., Pradella, D., and Turillazzi, S. 2005. Nestmate recognition cues in the honey bee: Differential importance of cuticular alkanes and alkenes. Chem. Senses 30:477–489.CrossRefPubMedGoogle Scholar
  5. Drechsler, P. and Federle, W. 2006. Biomechanics of smooth adhesive pads in insects: Influence of tarsal secretion on attachment performance. J. Comp. Physiol., A. 192:1213–1222.CrossRefGoogle Scholar
  6. Eltz, T. 2006. Tracing pollinator footprints on natural flowers. J. Chem. Ecol. 32:907–915.CrossRefPubMedGoogle Scholar
  7. Gawleta, N., Zimmermann, Y., and Eltz, T. 2005. Repellent foraging scent recognition across bee families. Apidologie 36:325–330.CrossRefGoogle Scholar
  8. Gilbert, F., Azmeh, S., Barnard, C., Behnke, J., Collins, S. A., Hurst, J., and Shuker, D. 2001. Individually recognizable scent marks on flowers made by a solitary bee. Anim. Behav. 61:217–229.CrossRefPubMedGoogle Scholar
  9. Ginzel, M. D. and Hanks, L. M. 2002. Evaluation of synthetic hydrocarbons for mark-recapture studies on the red milkweed beetle. J. Chem. Ecol. 28:1037–1043.CrossRefPubMedGoogle Scholar
  10. Goodwin, S., Kolosova, N., Kish, C. M., Wood, K. V., Dudareva, N., and Jenks, M. A. 2003. Cuticle characteristics and volatile emissions of petals in Antirrhinum majus. Physiol. Plant. 117:435–443.CrossRefPubMedGoogle Scholar
  11. Goulson, D., Stout, J. C., and Langley, J. 2000. Identity and function of scent marks deposited by foraging bumblebees. J. Chem. Ecol. 26:2897–2911.CrossRefGoogle Scholar
  12. Goulson, D., Chapman, J. W., and Hughes, W. 2001. Discrimination of unrewarding flowers by bees; direct detection of rewards and use of repellent scent marks. J. Insect Behav. 14:669–678.CrossRefGoogle Scholar
  13. Griffiths, D. W., Robertson, G. W., Shepherd, T., and Ramsay, G. 1999. Epicuticular waxes and volatiles from faba bean (Vicia faba) flowers. Phytochemistry 52:607–612.CrossRefGoogle Scholar
  14. Griffiths, D. W., Robertson, G. W., Shepherd, T., Birch, A. N. E., Gordon, S. C., and Woodford, J. A. T. 2000. Comparison of the composition of epicuticular wax from red raspberry (Rubus idaeus l.) and hawthorn (Crataegus monogyna jacq.) flowers. Phytochemistry 55:111–116.CrossRefPubMedGoogle Scholar
  15. Hefetz, A. 1992. Individual scent marking of the nest entrance as a mechanism for nest recognition in Xylocopa-pubescens (Hymenoptera, Anthophoridae). J. Insect Behav. 5:763–772.CrossRefGoogle Scholar
  16. Howard, R. W. and Blomquist, G. J. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50:371–393.CrossRefPubMedGoogle Scholar
  17. Jetter, R., Schaffer, S., and Rieder, M. 2000. Leaf cuticular waxes are arranged in chemically and mechanically distinct layers: Evidence from Prunus laurocerasus L. Plant Cell Environ. 23:619–628.CrossRefGoogle Scholar
  18. Jiao, Y. K., Gorb, S., and Scherge, M. 2000. Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, Insecta). J. Exp. Biol. 203:1887–1895.PubMedGoogle Scholar
  19. Lahav, S., Soroker, V., Hefetz, A., and Vander Meer, R. K. 1999. Direct behavioral evidence for hydrocarbons as ant recognition discriminators. Naturwissenschaften 86:246–249.CrossRefGoogle Scholar
  20. Liebig, J., Peeters, C., Oldham, N. J., Markstadter, C., and Holldobler, B. 2000. Are variations in cuticular hydrocarbons of queens and workers a reliable signal of fertility in the ant Harpegnathos saltator? Proc. Natl. Acad. Sci. USA 97:4124–4131.CrossRefPubMedGoogle Scholar
  21. Lockey, K. H. 1988. Lipids of the insect cuticle - origin, composition and function. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 89:595–645.CrossRefGoogle Scholar
  22. Molisch, H. 1929. Die Lebensdauer der Pflanze. Gustav Fischer Verlag, Jena.Google Scholar
  23. Oldham, N. J., Billen, J., and Morgan, E. D. 1994. On the similarity of the Dufour gland secretion and the cuticular hydrocarbons of some bumblebees. Physiol. Entomol. 19:115–123.CrossRefGoogle Scholar
  24. Ruther, J., Sieben, S., and Schricker, B. 2002. Nestmate recognition in social wasps: Manipulation of hydrocarbon profiles induces aggression in the European hornet. Naturwissenschaften 89:111–114.CrossRefPubMedGoogle Scholar
  25. Saleh, N., Scott, A. G., Bryning, G. P., and Chittka, L. 2007. Distinguishing signals and cues: Bumblebees use general footprints to generate adaptive behaviour at flowers and nest. Arth.-Plant Inter. 1:119–127.CrossRefGoogle Scholar
  26. Schmitt, U. 1990. Hydrocarbons in tarsal glands of Bombus-terrestris. Experientia 46:1080–1082.CrossRefGoogle Scholar
  27. Schmitt, U., Gunther, L., and Francke, W. 1991. Tarsal secretion marks food sources in bumblebees (Hymenoptera: Apidae). Chemoecology 2:35–40.CrossRefGoogle Scholar
  28. Sledge, M. F., Boscaro, F., and Turillazzi, S. 2001. Cuticular hydrocarbons and reproductive status in the social wasp Polistes dominulus. Behav. Ecol. Sociobiol. 49:401–409.CrossRefGoogle Scholar
  29. Stead, A. D. 1992. Pollination-induced flower senescence — a Review. Plant Growth Regul. 11:13–20.CrossRefGoogle Scholar
  30. Stout, J. C., Goulson, D., and Allen, J. A. 1998. Repellent scent-marking of flowers by a guild of foraging bumblebees (Bombus spp.). Behav. Ecol. Sociobiol. 43:317–326.CrossRefGoogle Scholar
  31. Wilms, J. and Eltz, T. 2008. Foraging scent marks of bumblebees: Footprint cues rather than pheromone signals. Naturwissenschaften 95:149–153.CrossRefPubMedGoogle Scholar
  32. Witjes, S. and Eltz, T. 2007. Influence of scent deposits on flower choice: Experiments in an artificial flower array with bumblebees. Apidologie 38:12–18.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Neurobiology, Sensory Ecology GroupUniversity of DüsseldorfDüsseldorfGermany

Personalised recommendations