Journal of Chemical Ecology

, Volume 35, Issue 9, pp 1117–1128 | Cite as

Stingless Bees: Chemical Differences and Potential Functions in Nannotrigona testaceicornis and Plebeia droryana Males and Workers

  • Adriana Pianaro
  • Cristiano Menezes
  • Warwick Estevam Kerr
  • Rodrigo B. Singer
  • Eda Flávia Lotufo R. A. Patricio
  • Anita J. Marsaioli


Cuticular wax, abdominal and cephalic extracts of foraging workers and males of Nannotrigona testaceicornis and Plebeia droryana, from the “Aretuzina” farm in São Simão, SP, Brazil, were analyzed by GC-MS. The principal constituents were hydrocarbons, terpenes, aldehydes, esters, steroids, alcohols, and fatty acids. Interspecific differences for both cuticular wax and cephalic extracts were found. The composition of cuticular wax and cephalic extracts was similar at the intraspecific level, with minor component differences between males and workers. Abdominal extracts differentiated sexes (male and worker) at the intraspecific and interspecific levels. The main chemical components in abdominal extracts of N. testaceicornis workers and males were geranylgeranyl acetate and (Z)-9-nonacosene, respectively. The principal components of abdominal extracts from P. droryana workers and males were tetradecanal and unsaturated fatty acids (linoleic and linolenic acids), respectively. A secondary alcohol, (S)-2-nonanol, was detected in Plebeia droryana males only, but not in workers. Preliminary field experiments showed that (S)-(+)-2-heptanol and (S)-(+)-2-heptanol/ (S)-(+)-2-nonanol (1:1) attracted workers of P. droryana, N. testaceicornis, and Frieseomelitta silvestrii. However, males did not respond suggesting that these compounds do not function as alarm or recruitment pheromones . In addition, racemic mixtures were inactive.


Meliponinae Stingless bees Nannotrigona testaceicornis Plebeia droryana Cuticular waxes Cephalic extracts Abdomen extracts (S)-2-nonanol 



We thank FAPESP (Fundação de Amparo a Pesquisa do Estado de São Paulo) for scholarships that made the present contribution possible (Adriana Pianaro, Proc. n o . 03/09358-3; Cristiano Menezes, Proc. n o 07/50218-1) and the Chemistry Institute of UNICAMP for support. We also acknowledge Paulo Nogueira-Neto for providing the stingless bees species and Carol H. Collins (IQ/UNICAMP) for critically revising the manuscript.


  1. ABDALLA, F. C. and CRUZ-LANDIM, C. 2001. Dufour glands in the hymenopterans (Apidae, Formicidae, Vespidae): a review. Rev. Brasil. Biol. 61: 95–106.Google Scholar
  2. ABDALLA, F. C., CRUZ-LANDIM, C., JONES, G. R., and MORGAN, E. D. 2003. Comparative study of the cuticular hydrocarbon composition of Melipona bicolor Lepeleteir, 1836 (Hymenoptera, Meliponini) workers and queens. Genet. Mol. Res. 2: 191–199.PubMedGoogle Scholar
  3. ABDALLA, F. C., JONES, G. R., MORGAN, D., and CRUZ-LANDIM, C. 2004. Chemical composition of the Dufour gland secretion in queens of Melipona bicolor (Hymenoptera, Meliponini). J. Braz. Chem. Soc. 15: 621–625.CrossRefGoogle Scholar
  4. ADAMS, R. P. 2001. Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. Allured, Illinois.Google Scholar
  5. ASHES, J. R., HAKEN, J. K., and MILL, S. C. 1980. Gas chromatography of esters -XII. Interrelationship of equivalent chain length (ECL) and retention index values of fatty esters. J. Chromatogr. 187: 297–305.CrossRefGoogle Scholar
  6. AYASSE, M. 2006. Floral scent and pollinator attraction in sexually deceptive orchids, Chapter 10, pp. 219–242, in: N. Dudareva and E. Pichersky (eds.). Biology of Floral Scents. CRC Press, Boca Raton.Google Scholar
  7. AYASSE, M., PAXTON, R. J., and TENGÖ, J. 2001. Mating behavior and chemical communication in the order Hymenoptera. Annu. Rev. Entomol. 46: 31–78.PubMedCrossRefGoogle Scholar
  8. BERTSCH, A., SCHWEER, H., and TITZE, A. 2004. Analysis of the labial gland secretions of the male bumblebee Bombus griseocollis (Hymenoptera: Apidae). Z. Naturforsch. 59C: 701–707.Google Scholar
  9. BIAN, Z., FALES, H. M., BLUM, M. S., JONES, T. H., RINDERER, T. E., and HOWARD, D. F. 1984. Chemistry of cephalic secretion of fire bee Trigona (Oxytrigona) tataira. J. Chem. Ecol. 10: 451–461.CrossRefGoogle Scholar
  10. BILLEN, J. 2006. Signal variety and communication in social insects. Proc. Neth. Entomol. Soc. Meet. 17: 9–25.Google Scholar
  11. BOOTH, Y. K., SCHWARTZ, B. D., FLETCHER, M. T., LAMBERT, L. K., KITCHING, W., and DE VOSS, J. J. 2006. A diverse suite of spiroacetals, including a novel branched representative, is released by female Bactrocera tryoni (Queensland fruit fly). Chem. Commun. 3975–3977.Google Scholar
  12. BREED, M. D. 1998. Recognition pheromones of the honey bee—the chemistry of nestmate recognition. BioScience 48: 463–470.CrossRefGoogle Scholar
  13. BREED, M. D., DIAZ, P. H., and LUCERO, K. D. 2004. Olfactory information processing in honeybee, Apis mellifera, nestmate recognition. Anim. Behav. 68: 921–928.CrossRefGoogle Scholar
  14. BROCKMANN, A., GROH, C., and FRÖHLICH, B. 2003. Wax perception in honeybees: contact is not necessary. Naturwissenschaften 90: 424–427.PubMedCrossRefGoogle Scholar
  15. BRUSCHINI, C., DANI, F. R., PIERACCINI, G., GUARNA, F., and TURILLAZZI, S. 2006. Volatiles from the venom of five species of paper wasps (Polistes dominulus, P. gallicus, P. nimphus, P. sulcifer and P. olivaceus). Toxicon 47: 812–825.PubMedCrossRefGoogle Scholar
  16. BRUSCHINI, C., CERVO, R., PROTTI, I., and TURILLAZZI, S. 2008. Caste differences in venom volatiles and their effect on alarm behaviour in the paper wasp Polistes dominulus (Christ). J. Exp. Biol. 211: 2442–2449.PubMedCrossRefGoogle Scholar
  17. BUSER, H. R., ARN, H., GUERIN, P., and RAUSCHER, S. 1983. Determination of double position in mono-unsaturated acetates by mass spectrometry of dimethyl disulfite adducts. Anal. Chem. 55: 818–822.CrossRefGoogle Scholar
  18. CRUZ-LANDIM, C. and MOTA, M. H. V. B. 1993. Differences between the female castes and males of Scaptotrigona postica depilis (Hymenoptera, Apidae, Meliponinae) in the occurrence and ultrastructure of tegumentary exocrine glands. Naturalia 18: 173–187.Google Scholar
  19. CRUZ-LÓPEZ, L., PATRICIO, E. F. L. R. A., and MORGAN, E. D. 2001. Secretions of stingless bees: the Dufour gland of Nannotrigona testaceicornis. J. Chem. Ecol. 27: 69–80.PubMedCrossRefGoogle Scholar
  20. CRUZ-LÓPEZ, L., PATRICIO, E. F. L. R. A., MAILE, R., and MORGAN, E. D. 2002. Secretions of stingless bees: cephalic secretions of two Frieseomelitta species. J. Insect Physiol. 48: 453–458.PubMedCrossRefGoogle Scholar
  21. CRUZ-LÓPEZ, L., MALO, E. A., MORGAN, E. D., RINCON, M., GUZMÁN, M., and ROJAS, J. C. 2005. Mandibular gland secretion of Melipona beecheii: chemistry and behavior. J. Chem. Ecol. 31: 1621–1632.PubMedCrossRefGoogle Scholar
  22. DOWNS, S. G. and RATNIEKS, F. L. W. 1999. Recognition of conspecifics by honeybee guards uses nonheritable cues acquired in the adult stage. Anim. Behav. 58: 643–648.PubMedCrossRefGoogle Scholar
  23. ENGELS, E., ENGELS, W., SCHRÖDER, W., and FRANCKE, W. 1987. Intranidal worker reactions to volatile compounds identified from cephalic secretions in the stingless bee, Scaptotrigona postica (Hymenoptera, Meliponinae). J. Chem. Ecol. 13: 371–386.CrossRefGoogle Scholar
  24. ENGELS, W., ENGELS, E., and FRANCKE, W. 1997. Ontogeny of cephalic volatile patterns in queens and mating biology of the neotropical stingless bee, Scaptotrigona postica. Invert. Reprod. Dev. 30: 251–256.Google Scholar
  25. FLETCHER, M. T. and KITCHING, W. 1995. Chemistry of fruit flies. Chem. Rev. 95: 789–828.CrossRefGoogle Scholar
  26. FRANCKE, W., LÜBKE, G., SCHRÖDER, W., RECKZIEGEL, A., IMPERATRIZ-FONSECA, V., KLEINERT, A., ENGELS, E., HARTFELDER, K., RADTKE, R., and ENGELS, W. 2000. Identification of oxygen containing volatiles in cephalic secretions of workers of Brazilian stingless bees. J. Braz. Chem. Soc. 11: 562–571.CrossRefGoogle Scholar
  27. FRÖHLICH, B., RIEDERER, M., and TAUTZ, J. 2001. Honeybees discriminate cuticular waxes based on esters and polar components. Apidologie 32: 265–274.CrossRefGoogle Scholar
  28. GRACIOLI-VITTI, L. F., ABADÍA, F. C., MORAES, R. L. M. S., and JONES, G. R. 2004. The chemical composition of the mandibular gland secretions of Melipona bicolor Lepeletier, 1836 (Hymenoptera, Apidae, Meliponini): a comparative study among castes and sexes. J. Braz. Chem. Soc. 15: 777–781.CrossRefGoogle Scholar
  29. HEFETZ, A., BATRA, S. W. T., and BLUM, M. S. 1979. Linalool, neral and geranial in the mandibular glands of Colletes bees—an aggregation pheromone. Experientia 35: 319–320.CrossRefGoogle Scholar
  30. HOWARD, R. W. and BAKER, J. E. 2003. Morphology and chemistry of Dufour glands in four ectoparasitoids: Cephalonomia tarsalis, C. waterstoni (Hymenoptera: Bethylidae), Anisopteromalus calandrae, and Pteromalus cerealellae (Hymenoptera: Pteromalidae). Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 135: 153–167.PubMedCrossRefGoogle Scholar
  31. JARAU, S., SCHULZ, C. M., HRNCIR, M., FRANCKE, W., ZUCCHI, R., BARTH, F. G., and AYASSE, M. 2006. Hexyl decanoate, the first trail pheromone compound identified in a stingless bee, Trigona recursa. J. Chem. Ecol. 32: 1555–1564.PubMedCrossRefGoogle Scholar
  32. JOHNSON, L. K., HAYNES, L. W., CARLSON, M. A., FORTNUM, H. A., and GORGAS, D. L. 1985. Alarm substances of the stingless bee, Trigona silvestriana. J. Chem. Ecol. 11: 409–416.CrossRefGoogle Scholar
  33. KERR, W. E., JUNGNICKEL, H., and MORGAN, E. D. 2004. Workers of the stingless bee Melipona scutellaris are more similar to males than to queens in their cuticular compounds. Apidologie 35: 611–618.CrossRefGoogle Scholar
  34. KITCHING, W., LEWIS, J. A., PERKINS, M. V., DREW, R., MOORE, C. J., SCHURIG, V., KÖNIG, W. A., and FRANCKE, W. 1989. Chemistry of fruit flies. Composition of the rectal gland secretion of (male) Dacus cucumis (cucumber fly) and Dacus halfordiae. Characterization of (Z, Z)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane. J. Org. Chem. 54: 3893–3902.CrossRefGoogle Scholar
  35. KULLENBERG, B., BERGSTRÖM, G., and STÄLLBERG-STENHAGEN, S. 1970. Volatile components of the marking secretion of male bumblebees. Acta Chem. 24: 1481–1483.CrossRefGoogle Scholar
  36. LAROCK, R. C. 1989. Comprehensive organic transformations: a guide to functional group preparations. VCH Publishers, New York.Google Scholar
  37. LELLO, E. 1976. Adnexal glands of the sting apparatus of bees. Anatomy and histology: V. Hymenoptera, Apidae. J. Kans. Entomol. Soc. 49: 85–99.Google Scholar
  38. LOCKEY, K. H. 1988. Lipids of the insect cuticle: origin, composition and function. Comp. Biochem. Physiol. 89B: 595–645.Google Scholar
  39. LUBY, J. M., REGNIER, F. E., CLARKE, E. T., WEAVER, E. C., and WEAVER, N. 1973. Volatile cephalic substances of the stingless bees, Trigona mexicana and Trigona pectoralis. J. Insect Physiol. 19: 1111–1127.CrossRefGoogle Scholar
  40. MICHENER, C. D. 2000. The bees of the world. The John Hopkins University Press, Baltimore.Google Scholar
  41. MORITZ, R. F. and HEISLER, T. 1992. Super and half-sister discrimination by honey-bee workers (Apis mellifera L.) in a trophallactic bioassay. Insect Soc. 39: 365–372.CrossRefGoogle Scholar
  42. MOURE, J. S. 1961. A preliminary supra-specific classification of the Old World Meliponinae bees (Hymenoptera, Apoidea). Studia Entomol. 4: 181–242.Google Scholar
  43. NOIROT, C. and QUENNEDEY, A. 1974. Fine structure of insect epidermal glands. Annu. Rev. Entomol. 19: 61–80.CrossRefGoogle Scholar
  44. NUNES, T. M., NASCIMENTO, F. S., TURATTI, I. C., LOPES, N. P., and ZUCCHI, R. 2008. Nestmate recognition in a stingless bee: does the similarity of chemical cues determine guard acceptance? Anim. Behav. 75: 1165–1171.CrossRefGoogle Scholar
  45. PATRICIO, E. F. L. R. A. 1995. Glândulas de Dufour em Abelhas Sem Ferrão. PhD Thesis. Institute of BioScience, Universidade Paulista Júlio de Mesquita Filho, UNESP, Rio Claro-SP, Brazil.Google Scholar
  46. PATRICIO, E. F. L. R. A., CRUZ-LÓPEZ, L., MAILE, R., and MORGAN, E. D. 2003. Secretions of stingless bees: the Dufour glands of some Frieseomelitta species (Apidae, Meliponinae). Apidologie 34: 359–365.CrossRefGoogle Scholar
  47. PERRIN, D. D., ARMAREGO, W. L. F., and PERRIN, D. R. 1980. Purification of laboratory chemicals. Pergamon Press, 2nd ed., Oxford.Google Scholar
  48. PIANARO, A., FLACH, A., PATRICIO, E. F. L. R. A., NOGUEIRA-NETO, P., and MARSAIOLI, A. J. 2007. Chemical changes associated with the invasion of a Melipona scutellaris colony by Melipona rufiventris workers. J. Chem. Ecol. 33: 971–984.PubMedCrossRefGoogle Scholar
  49. QUELLER, D. C. and STRASSMANN, J. E. 2002. The many selves of social insects. Science 296: 311–313.PubMedCrossRefGoogle Scholar
  50. ROUBIK, D. W. 1989. Ecology and natural history of tropical bees. Cambridge University Press, Cambridge.Google Scholar
  51. ROUBIK, D. W., SMITH, B. H., and CARLSON, R. G. 1987. Formic acid in caustic cephalic secretions of stingless bee, Oxytrigona (Hymenoptera: Apidae). J. Chem. Ecol. 13: 1079–1086.CrossRefGoogle Scholar
  52. SCHORKOPF, D. L. P., JARAU, S., FRANCKE, W., TWELE, R., ZUCCHI, R., HRNCIR, M., SCHMIDT, V. M., AYASSE, M., and BARTH, F. G. 2007. Spitting out information: Trigona bees deposit saliva to signal resource locations. Proc. R. Soc. B 274: 895–899.PubMedCrossRefGoogle Scholar
  53. SIMMONS, L. W., ALCOCK, J., and REEDER, A. 2003. The role of cuticular hydrocarbons in male attraction and repulsion by female Dawson’s burrowing bee, Amegilla dawsoni. Anim. Behav. 66: 677–685.CrossRefGoogle Scholar
  54. SINGER, T. L. 1998. Roles of hydrocarbons in the recognition systems of insects. Am. Zool. 38: 394–405.Google Scholar
  55. SINGER, R. B. 2002. The pollination mechanism in Trigonidium obtusum Lindl (Orchidaceae: Maxillariinae): sexual mimicry and trap-flowers. Ann. Bot. 89: 157–163.PubMedCrossRefGoogle Scholar
  56. SINGER, R. B., FLACH, A., KOEHLER, S., MARSAIOLI, A. J., and AMARAL, M. C. E. 2004. Sexual mimicry in Mormolyca ringens (Lindl.) Schltr. (Orchidaceae: Maxillariinae). Ann. Bot. 93: 755–762.PubMedCrossRefGoogle Scholar
  57. VAN DEN DOOL, H., and KRATZ, P. D. 1963. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 11: 463-471CrossRefGoogle Scholar
  58. VELTHUIS, H. H. W., KOEDAM, D., and IMPERATRIZ-FONSECA, V. L. 2005. The males of Melípona and other stingless bees, and their mothers. Apidologie 36: 169–185.CrossRefGoogle Scholar
  59. VINCENTI, M., GUGLIELMETTI, G., CASSANI, G., and TONINI, C. 1987. Determination of double position in diunsaturated compounds by mass spectrometry of dimethyl disulfite derivatives. Anal. Chem. 59: 694–699.CrossRefGoogle Scholar
  60. ZHANG, H., FLETCHER, M. T., DETTNER, K., FRANCKE, W., and KITCHING, W. 1999. Synthesis and absolute stereochemistry of spiroacetals in rove beetles (Coleoptera: Staphylinidae). Tetrahedron Lett. 40: 7851–7854.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Adriana Pianaro
    • 1
  • Cristiano Menezes
    • 2
    • 5
  • Warwick Estevam Kerr
    • 2
  • Rodrigo B. Singer
    • 3
  • Eda Flávia Lotufo R. A. Patricio
    • 4
  • Anita J. Marsaioli
    • 1
  1. 1.Chemistry InstituteUniversity of Campinas—UNICAMPCampinasBrazil
  2. 2.Institute of Genetics and BiochemistryFederal University of UberlândiaUberlândiaBrazil
  3. 3.Department of BotanyFederal University of Rio Grande do SulPorto AlegreBrazil
  4. 4.Laboratory of Bees, Institute of BiosciencesUniversity of São PauloSão PauloBrazil
  5. 5.Department of Biology, FFCLRPUniversity of São Paulo—USPRibeirão PretoBrazil

Personalised recommendations