Advertisement

Journal of Chemical Ecology

, Volume 35, Issue 8, pp 970–979 | Cite as

Variations in Allelochemical Composition of Leachates of Different Organs and Maturity Stages of Pinus halepensis

  • Catherine Fernandez
  • Yogan Monnier
  • Elena Ormeño
  • Virginie Baldy
  • Stéphane Greff
  • Vanina Pasqualini
  • Jean-Philippe Mévy
  • Anne Bousquet-Mélou
Article

Abstract

We investigated changes in the occurrence of allelochemicals from leachates of different Pinus halepensis organs taking into account the stages of pine stand age (i.e., young  < 15-years-old, middle age ± 30-years, and old  > 60-years-old). GC-MS analysis of aqueous extracts revealed approx. 59 components from needles and roots. The major constituents were divided into different phytochemical groups—phenolics (50%), fatty acids (44%), and terpenoids. Further analyses were carried out to characterize the distribution of allelochemicals in different organs and P. halepensis successional stages. Roots and needles had two distinct chemical profiles, while needle leachates were composed mainly of oxygenated terpenoids (e.g., α-eudesmol, α-cadinol, and α-terpineol). Roots mainly contained fatty acids. Needles from young pine stands had the highest content of monoterpenes, suggesting their role as potential allelochemicals that could help young pine stands to establish. Pooling the different functional chemical groups showed that needles and, to a lesser extent, old roots, had higher chemical diversity than the roots of young and medium-aged pines. The highest diversity in phenolic constituents and fatty acids was in young needles (Dchem = 2.38). Finally, caffeic acid, a compound that has allelopathic properties was found in aqueous extracts at high concentrations in both young needles and old roots. The role of this compound in mediation of biological interactions in P. halepensis ecosystem functioning is discussed.

Keywords

Pinus halepensis Miller Allepo pine Phenolic compounds Terpenoids Needles Roots Soil Allelopathy 

Notes

Acknowledgments

This study was funded by the CNRS within the framework of the Zone Atelier “Arrière-pays Méditerranéen”. We are grateful to the Luberon Natural Regional Park. The authors are indebted to many private owners who granted permission for work in their forest. We also thank, Prof David Mouillot (University of Montpellier II) for his help in statistical analysis and Stephanie Jim from University of California, Berkeley for proofreading the English.

References

  1. Adams, R. P. 1989. Identification of Essential Oils by Ion Trap Mass Spectroscopy. Academic Press. 302 p.Google Scholar
  2. Alonso, M., Rozados, M. J., Vega, J. A., Perez-Gorostiaga, P., Cuinas, P., Fonturbel, M. T., and Fernandez, C. 2002. Biochemical responses of Pinus pinaster trees to fire-induced trunk girdling and crown scorch: Secondary metabolites and pigments as needle chemical indicators. J. Chem. Ecol. 28:687–700.PubMedCrossRefGoogle Scholar
  3. Anderson, M. J., and Willis, T. J. 2003. Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology 84:511–525.CrossRefGoogle Scholar
  4. Barkosky, R. R., Einhellig, F. A.,and Butler, J. L. 2000. Caffeic acid-induced changes in plant-water relationships and photosynthesis in leafy spurge Euphorbia esula. J. Chem Ecol. 26:2095–2109.CrossRefGoogle Scholar
  5. Batish, D. R., Singh, H. P., Kaur, S., Kohli, R. K., and Yadav, S. S. 2008. Caffeic acid affects early growth, and morphogenetic response of hypocotyl cuttings of mung bean (Phaseolus aureus). J. Plant Physiol.. 165:297–305.PubMedCrossRefGoogle Scholar
  6. Bloom, R.G., and Mallik, A.U. 2004. Indirect effects of black spruce (Picea mariana) cover on community structure and function in sheep laurel (Kalmia angustifolia) dominated heath of eastern Canada. Plant Soil 265:279–293.CrossRefGoogle Scholar
  7. Blum, U., 1996. Allelopathic interactions involving phenolic acids. J. Nematol. 28 :259–267.Google Scholar
  8. Bousquet-Mélou, A., Louis, S., Robles, C., Greff, S., Dupouyet, S., and Fernandez, C. 2005. Allelopathic potential of Medicago arborea, a Mediterranean invasive shrub. Chemoecology 15:193–198.CrossRefGoogle Scholar
  9. Broncano, M. J., Riba, M., and Retana, J. 1998. Seed germination and seedling performance of two Mediterranean tree species, holm oak (Quercus ilex L.) and Aleppo pine (Pinus halepensis Mill.): a multifactor experimental approach. Plant Ecol. 138:17–26.CrossRefGoogle Scholar
  10. Bulut, Y., and Demir, M. 2007. The allelopathic effects of Scots pine (Pinus sylvestris L.) leaf extracts on turf grass seed germination and seedling growth. Asian J. Chem. 19(4):3169–3177.Google Scholar
  11. Caissard, J. C., Meekijjironenroj, A., Baudino, S., and Anstett, M. C. 2004. Localization of production and emission of pollinator attractant on whole leaves of Chamaerops humilis (Arecaceae). Am. J. Bot. 91:1190–1199.CrossRefGoogle Scholar
  12. Cannac, M., Pasqualini, V., Greff, S., Fernandez, C., and Ferrat, L. 2007. Characterization of phenolic compounds in Pinus laricio needles and their responses to prescribed burnings. Molecules 12:1614–1622.PubMedCrossRefGoogle Scholar
  13. Castaldi, S., Carfora, A., Fiorentino, A., Natale, A., Messere, A., Migliette, F., and Cotrufo, M. F. 2009. Inhibition of net nitrification activity in a Mediterranean woodland: possible role of chemicals produced by Arbutus unedo. Plant soil. 315: 273–283.CrossRefGoogle Scholar
  14. CHOU, C. H. 1999. Roles of Allelopathy in Plant Biodiversity and Sustainable Agriculture. Plant Sci. 18:609–636.Google Scholar
  15. Delfine, S., Loreto, F., Pinelli, P., Tognetti, R., and Alvino, A. 2003. Isoprenoids content and photosynthetic limitations in rosemary and spearmint plants under water stress, pp. 243–252, in Scientific Conference on Photosynthesis in a Changing World. Elsevier Science Bv, Chania, Greece.Google Scholar
  16. Dicke, M., Agrawal, A. A., and Bruin, J. 2003. Plants talk, but are they deaf? Trends Plant Sci.. 8:403–405.PubMedCrossRefGoogle Scholar
  17. Fernandez, C., Lelong, B., Vila, B., Mévy, J. P., Robles, C., Greff, S., Dupouyet, S., and Bousquet-Mélou, A. 2006. Potential allelopathic effect of Pinus halepensis in the secondary succession, an experimental approach. Chemoecology 16:97–105.CrossRefGoogle Scholar
  18. Fernandez, C., Voiriot, S., Mévy, J.P., Vila, B., Ormeño, E., Dupouyet, S., and Bousquet-Mélou, A. 2008. Regeneration failure of Pinus halepensis Mill.: the role of autotoxicity and some abiotic environnemental parameters. For. Ecol. Manage. 255(7):2928–2936.Google Scholar
  19. Fiamegos, Y. C., Nanos, C. G., Vervoort, J., and Stalikas, C. D. 2004. Analytical procedure for the in-vial derivatization-extraction of phenolic acids and flavonoids in methanolic and aqueous plant extracts followed by gas chromatography with mass-selective detection. J. Chromatogr. A 1041:11–18.PubMedCrossRefGoogle Scholar
  20. Gallet, C. 1994. Allelopathic potential in bilberry-spruce forests—influence of phenolic-compounds on spruce seedlings. J. Chem. Ecol. 20:1009–1024.CrossRefGoogle Scholar
  21. Garciaple, C., Vanrell, P., and Morey, M. 1995. Litter fall and decomposition in a Pinus-halepensis forest on Mallorca. J. Veg. Sci. 6:17–22.CrossRefGoogle Scholar
  22. Glass, A. D. M. 1974. Influence of phenolic acids upon ion uptake .3. Inhibition of potassium absorption. J. Exp. Bot. 25:1104–1113.CrossRefGoogle Scholar
  23. Glass, A. D. M., and Dunlop, J. 1974. Influence of phenolic acids on ion uptake .4. Depolarization of membrane-potentials. Plant Physiol. 54:855–858.PubMedCrossRefGoogle Scholar
  24. Harrison, H. F., Peterson, J. K., Snook, M. E., Bohac, J. R., Jackson, D. M. (2007). Quantity and potential biological activity of caffeic acid in sweet potato [Ipomoea batatas (L.) Lam.] storage root periderm. J. Agric. Food Chem. 51(10):2943–2948.CrossRefGoogle Scholar
  25. Hiltpold, I., and Turlings, T. C. J. 2008. Belowground chemical signaling in maize: \When simplicity rhymes with efficiency. J. Chem. Ecol. 34:628–635.PubMedCrossRefGoogle Scholar
  26. Iason, G. R., Lennon, J. J., Pakeman, R. J., Thoss, V., Beaton, J.K., Sim, D. A., and Elston, D. A. 2005. Does chemical composition of individual Scots pine trees determine the biodiversity of their associated ground vegetation? Ecol. Lett. 8:364–369.CrossRefGoogle Scholar
  27. Inderjit, and Asakawa C. 2001. Nature of interference potential of hairy vetch (Vicia villosa Roth) to radish (Raphanus sativus L.): does allelopathy play any role? Crop Prot. 20:261–265.CrossRefGoogle Scholar
  28. Inderjit, and Nilsen, E. T. 2003. Bioassays and field studies for allelopathy in terrestrial plants: Progress and problems. Crit. Rev. Plant Sci. 22:221–238.CrossRefGoogle Scholar
  29. Julkunen-Tiitto, R., Rousi, M., Bryant, J., Sorsa, S., Keinanen, M., and Sikanen, H. 1996. Chemical diversity of several Betulaceae species: Comparison of phenolics and terpenoids in northern birch stems. Trees-Struct. Funct. 11(1):16–22.Google Scholar
  30. Kainulainen, P., and Holopainen, J. K. 2002. Concentrations of secondary compounds in Scots Pine needles at different stages of decomposition. Soil Biol. Biochem. 34:37–42.CrossRefGoogle Scholar
  31. Karageorgou, P., Levizou, E., and Manetas, Y. 2002. The influence of drought, shade and avaibility of mineral nutrients on exudate phenolics of Dittrichia viscosa. Flora 197:285–289.Google Scholar
  32. Kato-Noguchi, H., Fushimi, Y., and Shigemory, H. 2009. An allelopathic subtance in red pine needles (Pinus densiflora). J. Plant Physiol. 4:442–446.CrossRefGoogle Scholar
  33. Knudsen, J. T., and Gershenzon, J. 2006. The Chemical Diversity of Floral Scent. Biology of floral scent. 27–52.Google Scholar
  34. Liu, D. L., and An, M. 2003. Simulating dynamics of allelochemical production from living plants. “Solutions for a better environment”. Proceedings of the 11th Australian Agronomy Conference. Australian Society of Agronomy., Geelong, Victoria.Google Scholar
  35. Macchioni, F., Cioni, P. L., Flamini, G., Morelli, I., Maccioni, S., and Ansaldi, M. 2003. Chemical composition of essential oils from needles, branches and cones of Pinus pinea, P. halepensis, P. pinaster and P. nigra from central Italy. Flavour Frag. J. 18:139–143.CrossRefGoogle Scholar
  36. Maestre, F.T., Cortina, J., and Bautista, S. 2004. Mechanisms underlying the interaction between Pinus halepensis and the native late-successional shrub Pistacia lentiscus in a semi-arid plantation. Ecography 27: 776–786.CrossRefGoogle Scholar
  37. Monnier, Y., Vila, B., and Fernandez, C. 2008. Plant-plant interference in Mediterranean forest dynamic : consequences of resources, competition and allelopathy on Aleppo pine (Pinus halepensis Mill.) and a deciduous oak (Quercus pubescens Willd.) growth. 5th World Congress on Allelopathy « Growing awareness of the role of allelopathy in ecological, agricultural and environmental processes ». Saratoga Springs, USA, pp 54, September 21–25.Google Scholar
  38. Mallik, A. U., and Newton, P. F. 1988. Inhibition of black spruce seedling growth by forest-floor substrates of central Newfoundland. For. Ecol. Manag. 23:273–283.CrossRefGoogle Scholar
  39. Navarro-Cano, J.A., Barbera, G.G., Ruiz-Navarro A., and Castillo, V.M. 2009. Pine plantation bands limit seedling recruitment of a perennial grass under semiarid conditions. J. Arid. Environ. 1:120–126.CrossRefGoogle Scholar
  40. Nektarios, P. A., Economou, G., and Avgoulas, C. 2005. Allelopathic effects of Pinus halepensis needles on turfgrasses and biosensor plants. Hortscience 40:246–250.Google Scholar
  41. Ormeño, E., Bousquet-Melou, A., Mevy, J. P., Greff, S., Robles, C., Bonin, G., and Fernandez, C. 2007. Effect of intraspecific competition and substrate type on terpene emissions from some Mediterranean plant species. J. Chem. Ecol. 33:277–286.PubMedCrossRefGoogle Scholar
  42. Pellissier, F. 1994. Effect of phenolic compounds in humus on the natural regeneration of spruce. Phytochemistry 36:865–867.CrossRefGoogle Scholar
  43. Rice, E. L., 1984. Allelopathy. 2nd Ed GB-London : Academic press.Google Scholar
  44. Ripert, C., and Vennetier, M. 2002. Evaluation des potentialités forestières. Guide technique du forestier méditerranéen français, chapitre 2 bis. Cemagref, Antony.Google Scholar
  45. Robles, C., Greff, S., Pasqualini, V., Garzino, S., Bousquet-Melou, A., Fernandez, C., Korboulewsky, N., and Bonin, G. 2003. Phenols and flavonoids in Aleppo pine needles as bioindicators of air pollution. J. Environ. Qual. 32:2265–2271.PubMedCrossRefGoogle Scholar
  46. Roche, P., and Tatoni, T. 1995. Comparative study of secondary succession and resilience processes in Mediterranean-types ecosystems, pp. 159–173, in Bellan, B., Bonin, G., Emig, C., (Eds), Functioning and Dynamics of Perturbated Ecosystems. Paris: Lavoisier.Google Scholar
  47. Soil Survey Staff (1999) Soil Taxonomy, 2nd ed. USDA Natural Resources Conservation Service Agriculture Handbook.Google Scholar
  48. Song J.-F., and Cui X.-Y. 2003. Analysis of organic acids in selected forest litters of Northeast China. J. Forestry Research. 14(4):285–289.CrossRefGoogle Scholar
  49. Thoss, V., Byers, J.A. 2006. Monoterpene chemodiversity of ponderosa pine in relation to herbivory and bark beetle colonization. Chemoecology 16: 51–58.CrossRefGoogle Scholar
  50. Valette, C., Andary, C., Geiger, J. P., Sarah, J. L., and Nicole, M. 1998. Histochemical and cytochemical investigations of phenols in roots of banana infected by the burrowing nematode Radopholus similis. Phytopathology 88:1141–1148.PubMedCrossRefGoogle Scholar
  51. Vernenghi, A., Einhorn, J., Kunesch, G., Malosse, C., Ramiandrasoa, F., and Ravise, A. 1986. Phytoalexines and defense reactions of tomatoes to Phytophtora parasitica and Verticillium albo atrum infections. Can. J. Bot. 64:973–982.CrossRefGoogle Scholar
  52. Vitousek, P.M., and Reiners, W.A. 1991. Ecological succession and nutrient budgets: A citation classic commentary on ecosystem succession and nutrient retention, a hypothesis. Agr. Biol. Environ. Sci. 42:10–10.Google Scholar
  53. Vokou, D., Douvli, P., Blionis, G. J., and Halley, J. M. 2003. Effects of monoterpenoids, acting alone or in pairs, on seed germination and subsequent seedling growth. J. Chem. Ecol. 29:2281–2301.PubMedCrossRefGoogle Scholar
  54. White, C.S. 1994. Monoterpenes—Their effects on ecosystem nutrient cycling. J. Chem. Ecol. 20:1381–1406.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Catherine Fernandez
    • 1
  • Yogan Monnier
    • 1
  • Elena Ormeño
    • 3
  • Virginie Baldy
    • 1
  • Stéphane Greff
    • 1
  • Vanina Pasqualini
    • 2
  • Jean-Philippe Mévy
    • 1
  • Anne Bousquet-Mélou
    • 1
  1. 1.Institut Méditerranéen d’Ecologie et Paléoécologie (IMEP)-UMR CNRS 6116, Equipe DFCVAix-Marseille UniversitéCedex 03France
  2. 2.Sciences Pour l’Environnement—UMR CNRS 6134, Equipe Feux, Université de CorseFaculté des Sciences et TechniquesCorteFrance
  3. 3.Division of Ecosystem Sciences, Department of Environmental Science, Policy, and Management (ESPM)Berkeley University of California251A Mulford Hall BerkeleyUSA

Personalised recommendations