Journal of Chemical Ecology

, Volume 35, Issue 4, pp 435–448 | Cite as

Ethanol and (−)-α-Pinene: Attractant Kairomones for Bark and Ambrosia Beetles in the Southeastern US



In 2002–2004, we examined the flight responses of 49 species of native and exotic bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae) to traps baited with ethanol and/or (−)-α-pinene in the southeastern US. Eight field trials were conducted in mature pine stands in Alabama, Florida, Georgia, North Carolina, and South Carolina. Funnel traps baited with ethanol lures (release rate, about 0.6 g/day at 25–28°C) were attractive to ten species of ambrosia beetles (Ambrosiodmus tachygraphus, Anisandrus sayi, Dryoxylon onoharaensum, Monarthrum mali, Xyleborinus saxesenii, Xyleborus affinis, Xyleborus ferrugineus, Xylosandrus compactus, Xylosandrus crassiusculus, and Xylosandrus germanus) and two species of bark beetles (Cryptocarenus heveae and Hypothenemus sp.). Traps baited with (−)-α-pinene lures (release rate, 2–6 g/day at 25–28°C) were attractive to five bark beetle species (Dendroctonus terebrans, Hylastes porculus, Hylastes salebrosus, Hylastes tenuis, and Ips grandicollis) and one platypodid ambrosia beetle species (Myoplatypus flavicornis). Ethanol enhanced responses of some species (Xyleborus pubescens, H. porculus, H. salebrosus, H. tenuis, and Pityophthorus cariniceps) to traps baited with (−)-α-pinene in some locations. (−)-α-Pinene interrupted the response of some ambrosia beetle species to traps baited with ethanol, but only the response of D. onoharaensum was interrupted consistently at most locations. Of 23 species of ambrosia beetles captured in our field trials, nine were exotic and accounted for 70–97% of total catches of ambrosia beetles. Our results provide support for the continued use of separate traps baited with ethanol alone and ethanol with (−)-α-pinene to detect and monitor common bark and ambrosia beetles from the southeastern region of the US.


Dendroctonus Ethanol Exotic species Host attractant Hylastes Hypothenemus Ips Kairomone Myoplatypus α-Pinene Platypodidae Scolytidae Xyleborinus Xyleborus Xylosandrus 



We thank R. G. Kelsey, Assoc. Editor S. J. Seybold, B. T. Sullivan, and two anonymous referees for reviews of the manuscript; C. M. Crowe, C. Asaro, D. Johnson, and R. Brantley for field and laboratory assistance; D. E. Bright for identifications of Pityophthorus species; and the staffs at the Apalachicola, Bankhead, Nantahala, Ocala, Oconee, Osceola, and Sumter National Forests and Blue Valley Experimental Forest for assistance and permission to conduct these studies on their respective lands. The use of trade names and identification of firms or corporations does not constitute an official endorsement or approval by the US Government of any product or service to the exclusion of others that may be suitable. Funding for this research was provided by the USDA Forest Service. The USDA is an equal-opportunity provider and employer.


  1. Allen, E. A., and Humble, L. M. 2002. Nonindigenous species introductions: a threat to Canada’s forests and forest economy. Can. J. Plant Pathol. 24:103–110.Google Scholar
  2. Anderson, R. F. 1977. Dispersal and attack behavior of the southern pine engraver, Ips grandicollis Eichh., Coleoptera, Scolytidae, pp. 17–23, in H. M. Kulman, and H. C. Chaing (eds.). Insect Ecology. Minnesota Agricultural & Experimental Station Technical Bulletin 310University of Minnesota and Minnesota Agricultural Experiment Station, St. Paul.Google Scholar
  3. Bambara, S., Stephan, D., and Reeves, E. 2008. Granulate [Asian] ambrosia beetle trapping. Ornamentals and Turf, Dept. Entomol. Insect Note 122, North Carolina Cooperative Extension, N.C. State University, 2 p. [].
  4. Bauer, J., and Vité, J. P. 1975. Host selection by Trypodendron lineatum. Naturwissenschaften 62:539.CrossRefGoogle Scholar
  5. Borden, J. H., Lindgren, B. S., and Chong, L. 1980. Ethanol and α-pinene as synergists for the aggregation pheromones of two Gnathotrichus species. Can. J. For. Res. 10:290–292.Google Scholar
  6. Borden, J. H., Chong, L., Slessor, K. N., Oehlschlager, A. C., Pierce, H. D. Jr., and Lindgren, B. S. 1981. Allelochemic activity of aggregation pheromones between three sympatric species of ambrosia beetles (Coleoptera: Scolytidae). Can. Entomol. 113:557–563.Google Scholar
  7. Brockerhoff, E. G., Bain, J., Kimberley, M., and Knižek, M. 2006. Interception frequency of exotic bark and ambrosia beetles (Coleoptera: Scolytinae) and relationship with establishment in New Zealand and worldwide. Can. J. For. Res. 36:289–298.CrossRefGoogle Scholar
  8. Byers, J. A. 1989. Chemical ecology of bark beetles. Experientia 45:271–283.CrossRefGoogle Scholar
  9. Cade, S. C., Hrutfiord, B. F., and Gara, R. I. 1970. Identification of a primary attractant for Gnathotrichus sulcatus isolated from western hemlock logs. J. Econ. Entomol. 63:1014–1015.Google Scholar
  10. Chénier, J. V. R., and Philogène, B. J. R. 1989. Field responses of certain forest Coleoptera to conifer monoterpenes and ethanol. J. Chem. Ecol. 15:1729–1745.CrossRefGoogle Scholar
  11. Chornesky, E. A., Bartuska, A. M., Aplet, G. H., Britton, K. O., Cummings-Carlson, J., Davis, F. W., Eskow, J., Gordon, D. R., Gottschalk, K. W., Haack, R. A., Hansen, A. J., Mack, R. N., Rahel, F. J., Shannon, M. A., Wainger, L. A., and Wigley, T. B. 2005. Science priorities for reducing the threat of invasive species to sustainable forestry. BioScience 55:335–348.CrossRefGoogle Scholar
  12. Coyle, D. R., Booth, D. C., and Wallace, M. S. 2005. Ambrosia beetle (Coleoptera: Scolytidae) species, flight, and attack on living eastern cottonwood trees. J. Econ. Entomol. 98:2049–2057.PubMedGoogle Scholar
  13. Dunn, J. P., and Potter, D. A. 1991. Synergistic effects of oak volatiles with ethanol in the capture of saprophagous wood borers. J. Entomol. Sci. 26:425–429.Google Scholar
  14. Erbilgin, N., and Raffa, K. F. 2000. Opposing effects of host monoterpenes on responses by two sympatric species of bark beetles to their aggregation pheromones. J. Chem. Ecol. 26:2527–2548.CrossRefGoogle Scholar
  15. Erbilgin, N., Szele, A., Klepzig, K. D., and Raffa, K. F. 2001. Trap type, chirality of α-pinene, and geographic region affect sampling efficiency of root and lower stem insects in pine. J. Econ. Entomol. 94:1113–1121.PubMedCrossRefGoogle Scholar
  16. Fatzinger, C. W. 1985. Attraction of the black turpentine beetle (Coleoptera: Scolytidae) and other forest Coleoptera to turpentine-baited traps. Environ. Entomol. 14:768–775.Google Scholar
  17. Fatzinger, C. W., Siegfried, B. D., Wilkinson, R. C., and Nation, J. L. 1987. trans-Verbenol, turpentine, and ethanol as trap baits for the black turpentine beetle, Dendroctonus terebrans, and other forest Coleoptera in north Florida. J. Entomol. Sci. 22:201–209.Google Scholar
  18. Flint, M. L., Liu, D., Lee, J. C., Beiriger, R., Penrose, R. L., Bright, D. E., and Seybold, S. J. 2007. Responses of red haired pine bark beetle (RPBB), Hylurgus ligniperda, and associated subcortical Coleoptera to host volatiles in southern California. Poster at the 2007 Entomological Society of America Annual Meeting, San Diego CA, 9–12 December 2007 []
  19. Franceschi, V. R., Krokene, P., Christiansen, E., and Krekling, T. 2005. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol 167:353–376.PubMedCrossRefGoogle Scholar
  20. Furniss, R. L., and Carolin, V. M. 1977. Western forest insects. US Dept. Agriculture Forest Service, Misc. Pub. 1339. 654 pp.Google Scholar
  21. Gara, R. I., Littke, W. R., and Rhoades, D. F. 1993. Emission of ethanol and monoterpenes by fungal infected lodgepole pine trees. Phytochemistry 34:987–990.CrossRefGoogle Scholar
  22. Glantz, S. A. 2005. Primer of Biostatistics. p. 520. McGraw-Hill Professional, New York.Google Scholar
  23. Graham, K. 1968. Anaerobic induction of primary chemical attractancy for ambrosia beetles. Can. J. Zool. 46:905–908.CrossRefGoogle Scholar
  24. Haack, R. A. 2001. Intercepted Scolytidae (Coleoptera) at U.S. ports of entry:1985–2000. Integr. Pest Manage. Rev. 6:253–282.CrossRefGoogle Scholar
  25. Haack, R. A. 2006. Exotic bark- and wood-boring Coleoptera in the United States: recent establishments and interceptions. Can. J. For. Res. 36:269–288.CrossRefGoogle Scholar
  26. Hobson, K. R., Wood, D. L., Cool, L. G., White, P. R., Ohtsuka, T., Kubo, I., and Zavarin, E. 1993. Chiral specificity in responses by the bark beetle Dendroctonus valens to host volatiles. J. Chem. Ecol. 19:1837–1846.CrossRefGoogle Scholar
  27. Hulcr, J., Mogia, M., Isua, B., and Novotny, V. 2007. Host specificity of ambrosia and bark beetles (Col., Curculionidae: Scolytinae and Platypodinae) in a New Guinea rainforest. Ecol. Entomol. 32:762–772.CrossRefGoogle Scholar
  28. Jordal, B. H., Beaver, R. A., and Kirkendall, L. R. 2001. Breaking taboos in the tropics: incest promotes colonization by wood-boring beetles. Glob Ecol. Biogeogr. 10:345–357.CrossRefGoogle Scholar
  29. Kelsey, R. G. 1994. Ethanol synthesis in Douglas-fir logs felled in November, January, and March and its relationship to ambrosia beetle attack. Can. J. For. Res. 24:2096–2104.CrossRefGoogle Scholar
  30. Kelsey, R. G., and Joseph, G. 1998. Ethanol in Douglas-fir with black-stain root disease (Leptographium wageneri). Can. J. For. Res. 28:1207–1212.CrossRefGoogle Scholar
  31. Kelsey, R. G., and Joseph, G. 2001. Attraction of Scolytus unispinosus bark beetles to ethanol in water-stressed Douglas-fir branches. For. Ecol. Manage. 144:229–238.CrossRefGoogle Scholar
  32. Kelsey, R. G., and Joseph, G. 2003. Ethanol in ponderosa pine as an indicator of physiological injury from fire and its relationship to secondary beetles. Can. J. For. Res. 33:870–884.CrossRefGoogle Scholar
  33. Kelsey, R. G., Joseph, G., and Thies, W. G. 1998. Sapwood and crown symptoms in ponderosa pine infected with black-stain and annosum root disease. For. Ecol. Manage. 111:181–191.CrossRefGoogle Scholar
  34. Klimetzek, D., Köhler, J., Vité, J. P., and Kohnle, U. 1986. Dosage response to ethanol mediates host selection by “secondary” bark beetles. Naturwissenschaften 73:270–271.CrossRefGoogle Scholar
  35. Kohnle, U. 1985. Investigations of chemical communication systems in secondary bark beetles (Col., Scolytidae). Z. Angew. Entomol. 100:197–218.Google Scholar
  36. Lee, J. C., Haack, R. A., Negrón, J. F., Witcosky, J. J., and Seybold, S. J. 2007. Invasive bark beetles. US Dept. Agriculture Forest Service, For. Insect & Disease Leafl. 176. 12 p.Google Scholar
  37. Lindelöw, Ǻ., Eidmann, H. H., and Nordenheim, H. 1993. Response on the ground of bark beetle and weevil species colonizing conifer stumps and roots to terpenes and ethanol. J. Chem. Ecol. 19:1393–1403.CrossRefGoogle Scholar
  38. Lindgren, B. S. 1990. Ambrosia beetles. J. Forestry 88:8–11.Google Scholar
  39. Liu, Y., and Dai, H. 2006. Application of bark beetle semiochemicals for quarantine of bark beetles in China. J. Insect Sci. 6:41.CrossRefGoogle Scholar
  40. Markalas, S., and Kalapanida, M. 1997. Flight pattern of some Scolytidae attracted to flight barrier traps baited with ethanol in an oak forest in Greece. J. Pest Sci. 70:55–57.Google Scholar
  41. Miller, D. R. 2006. Ethanol and (–)-α-pinene: attractant kairomones for some large wood-boring beetles in southeastern USA. J. Chem. Ecol. 32:779–794.PubMedCrossRefGoogle Scholar
  42. Mirov, N. T. 1961. Composition of gum turpentine of pines. US Dept. Agriculture Forest Service, Pacific Southwest Forest and Range Experiment Station Tech. Bull. 1239. 158 p.Google Scholar
  43. Moeck, H. A. 1970. Ethanol as the primary attractant for the ambrosia beetle Trypodendron lineatum (Coleoptera: Scolytidae). Can. Entomol. 102:985–995.Google Scholar
  44. Montgomery, M. E., and Wargo, P. M. 1983. Ethanol and other host-derived volatiles as attractants to beetles that bore into hardwoods. J. Chem. Ecol. 9:181–190.CrossRefGoogle Scholar
  45. Oliver, J. B., and Mannion, C. M. 2001. Ambrosia beetle (Coleoptera: Scolytidae) species attacking chestnut and captured in ethanol-baited traps in middle Tennessee. Environ. Entomol. 30:909–918.Google Scholar
  46. Pepper, W. D., Zarnoch, S. J., DeBarr, G. L., de Groot, P., and Tangren, C. D. 1997. Choosing a transformation in analyses of insect counts from contagious distributions with low means. US Dept. Agriculture, Forest Service Research Paper SRS-5, Asheville NC.Google Scholar
  47. Phillips, T. W. 1990. Responses of Hylastes salebrosus to turpentine, ethanol and pheromones of Dendroctonus (Coleoptera: Scolytidae). Florida Entomol. 73:286–292.CrossRefGoogle Scholar
  48. Phillips, T. W., Wilkening, A. J., Atkinson, T. H., Nation, J. L., Wilkinson, R. C., and Foltz, J. L. 1988. Synergism of turpentine and ethanol as attractants for certain pine-infesting beetles (Coleoptera). Environ. Entomol. 17:456–462.Google Scholar
  49. Rabaglia, R., Duerr, D., Acciavatti, R., and Ragenovich, I. 2008. Early detection and rapid response for non-native bark and ambrosia beetles. US Dept. Agriculture, Forest Service, Forest Health Protection, Washington, D.C., 12 p. []
  50. Raffa, K. F., Aukema, B. H., Erbilgin, N., Klepzig, K. D., and Wallin, K. F. 2005. Interactions among conifer terpenoids and bark beetles across multiple levels of scale: an attempt to understand links between population patterns and physiological processes 79–118, in J. T. Romeo (ed.). Chemical Ecology and Phytochemistry of Forest Ecosystems. Recent Advances Phytochem. 39Google Scholar
  51. Roling, M. P., and Kearby, W. H. 1975. Seasonal flight and vertical distribution of Scolytidae attracted to ethanol in an oak-hickory forest in Missouri. Can. Entomol. 107:1315–1320.Google Scholar
  52. Rudinsky, J. A., Novák, V., and Švihra, P. 1971. Attraction of the bark beetle Ips typographus L. to terpenes and a male-produced pheromone. Z. Angew. Entomol. 67:179–188.Google Scholar
  53. Schroeder, L. M. 1988. Attraction of the bark beetle Tomicus piniperda and some other bark- and wood-boring beetles to the host volatiles α-pinene and ethanol. Entomol. Exp. Appl. 46:203–210.CrossRefGoogle Scholar
  54. Schroeder, L. M., and Eidmann, H. H. 1987. Gallery initiation by Tomicus piniperda (Coleoptera: Scolytidae) on Scots pine trees baited with host volatiles. J. Chem. Ecol. 13:1591–1599.CrossRefGoogle Scholar
  55. Schroeder, L. M., and Lindelöw, Ǻ. 1989. Attraction of scolytids and associated beetles by different absolute amounts and proportions of α-pinene and ethanol. J. Chem. Ecol. 15:807–817.CrossRefGoogle Scholar
  56. Seybold, S. J., Huber, D. P. W., Lee, J. C., Graves, A. D., and Bohlmann, J. 2006. Pine monoterpenes and pine bark beetles: a marriage of convenience for defense and chemical communication. Phytochem. Rev. 5:143–178.CrossRefGoogle Scholar
  57. Smith, R. H. 2000. Xylem monoterpenes of pines: distribution, variation, genetics, function. US Dept. Agriculture Forest Service General Tech. Rep. PSW-GTR-177. 454 p.Google Scholar
  58. USDA APHIS. 2007. Plant health—pest detection. US Dept. of Agriculture, Animal and Plant Health Inspection Service []
  59. Werner, R. A. 1972. Aggregation behaviour of the beetle Ips grandicollis in response to host-produced attractants. J. Insect Physiol. 18:423–437.CrossRefGoogle Scholar
  60. Witcosky, J. J., Schowalter, T. D., and Hansen, E. M. 1987. Host-derived attractants for the beetles Hylastes nigrinus (Coleoptera: Scolytidae) and Steremnius carinatus (Coleoptera: Curculionidae). Environ. Entomol. 16:1310–1313.Google Scholar

Copyright information

© US Government 2009

Authors and Affiliations

  1. 1.USDA Forest ServiceSouthern Research StationAthensUSA
  2. 2.USDA Forest ServiceForest Health ProtectionArlingtonUSA

Personalised recommendations