Skip to main content
Log in

Ethanol and (−)-α-Pinene: Attractant Kairomones for Bark and Ambrosia Beetles in the Southeastern US

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

In 2002–2004, we examined the flight responses of 49 species of native and exotic bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae) to traps baited with ethanol and/or (−)-α-pinene in the southeastern US. Eight field trials were conducted in mature pine stands in Alabama, Florida, Georgia, North Carolina, and South Carolina. Funnel traps baited with ethanol lures (release rate, about 0.6 g/day at 25–28°C) were attractive to ten species of ambrosia beetles (Ambrosiodmus tachygraphus, Anisandrus sayi, Dryoxylon onoharaensum, Monarthrum mali, Xyleborinus saxesenii, Xyleborus affinis, Xyleborus ferrugineus, Xylosandrus compactus, Xylosandrus crassiusculus, and Xylosandrus germanus) and two species of bark beetles (Cryptocarenus heveae and Hypothenemus sp.). Traps baited with (−)-α-pinene lures (release rate, 2–6 g/day at 25–28°C) were attractive to five bark beetle species (Dendroctonus terebrans, Hylastes porculus, Hylastes salebrosus, Hylastes tenuis, and Ips grandicollis) and one platypodid ambrosia beetle species (Myoplatypus flavicornis). Ethanol enhanced responses of some species (Xyleborus pubescens, H. porculus, H. salebrosus, H. tenuis, and Pityophthorus cariniceps) to traps baited with (−)-α-pinene in some locations. (−)-α-Pinene interrupted the response of some ambrosia beetle species to traps baited with ethanol, but only the response of D. onoharaensum was interrupted consistently at most locations. Of 23 species of ambrosia beetles captured in our field trials, nine were exotic and accounted for 70–97% of total catches of ambrosia beetles. Our results provide support for the continued use of separate traps baited with ethanol alone and ethanol with (−)-α-pinene to detect and monitor common bark and ambrosia beetles from the southeastern region of the US.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allen, E. A., and Humble, L. M. 2002. Nonindigenous species introductions: a threat to Canada’s forests and forest economy. Can. J. Plant Pathol. 24:103–110.

    Google Scholar 

  • Anderson, R. F. 1977. Dispersal and attack behavior of the southern pine engraver, Ips grandicollis Eichh., Coleoptera, Scolytidae, pp. 17–23, in H. M. Kulman, and H. C. Chaing (eds.). Insect Ecology. Minnesota Agricultural & Experimental Station Technical Bulletin 310University of Minnesota and Minnesota Agricultural Experiment Station, St. Paul.

    Google Scholar 

  • Bambara, S., Stephan, D., and Reeves, E. 2008. Granulate [Asian] ambrosia beetle trapping. Ornamentals and Turf, Dept. Entomol. Insect Note 122, North Carolina Cooperative Extension, N.C. State University, 2 p. [www.ces.ncsu.edu/depts/ent/notes/O&T/trees/note122/note122.html].

  • Bauer, J., and Vité, J. P. 1975. Host selection by Trypodendron lineatum. Naturwissenschaften 62:539.

    Article  CAS  Google Scholar 

  • Borden, J. H., Lindgren, B. S., and Chong, L. 1980. Ethanol and α-pinene as synergists for the aggregation pheromones of two Gnathotrichus species. Can. J. For. Res. 10:290–292.

    CAS  Google Scholar 

  • Borden, J. H., Chong, L., Slessor, K. N., Oehlschlager, A. C., Pierce, H. D. Jr., and Lindgren, B. S. 1981. Allelochemic activity of aggregation pheromones between three sympatric species of ambrosia beetles (Coleoptera: Scolytidae). Can. Entomol. 113:557–563.

    CAS  Google Scholar 

  • Brockerhoff, E. G., Bain, J., Kimberley, M., and Knižek, M. 2006. Interception frequency of exotic bark and ambrosia beetles (Coleoptera: Scolytinae) and relationship with establishment in New Zealand and worldwide. Can. J. For. Res. 36:289–298.

    Article  Google Scholar 

  • Byers, J. A. 1989. Chemical ecology of bark beetles. Experientia 45:271–283.

    Article  CAS  Google Scholar 

  • Cade, S. C., Hrutfiord, B. F., and Gara, R. I. 1970. Identification of a primary attractant for Gnathotrichus sulcatus isolated from western hemlock logs. J. Econ. Entomol. 63:1014–1015.

    CAS  Google Scholar 

  • Chénier, J. V. R., and Philogène, B. J. R. 1989. Field responses of certain forest Coleoptera to conifer monoterpenes and ethanol. J. Chem. Ecol. 15:1729–1745.

    Article  Google Scholar 

  • Chornesky, E. A., Bartuska, A. M., Aplet, G. H., Britton, K. O., Cummings-Carlson, J., Davis, F. W., Eskow, J., Gordon, D. R., Gottschalk, K. W., Haack, R. A., Hansen, A. J., Mack, R. N., Rahel, F. J., Shannon, M. A., Wainger, L. A., and Wigley, T. B. 2005. Science priorities for reducing the threat of invasive species to sustainable forestry. BioScience 55:335–348.

    Article  Google Scholar 

  • Coyle, D. R., Booth, D. C., and Wallace, M. S. 2005. Ambrosia beetle (Coleoptera: Scolytidae) species, flight, and attack on living eastern cottonwood trees. J. Econ. Entomol. 98:2049–2057.

    PubMed  CAS  Google Scholar 

  • Dunn, J. P., and Potter, D. A. 1991. Synergistic effects of oak volatiles with ethanol in the capture of saprophagous wood borers. J. Entomol. Sci. 26:425–429.

    CAS  Google Scholar 

  • Erbilgin, N., and Raffa, K. F. 2000. Opposing effects of host monoterpenes on responses by two sympatric species of bark beetles to their aggregation pheromones. J. Chem. Ecol. 26:2527–2548.

    Article  CAS  Google Scholar 

  • Erbilgin, N., Szele, A., Klepzig, K. D., and Raffa, K. F. 2001. Trap type, chirality of α-pinene, and geographic region affect sampling efficiency of root and lower stem insects in pine. J. Econ. Entomol. 94:1113–1121.

    Article  PubMed  CAS  Google Scholar 

  • Fatzinger, C. W. 1985. Attraction of the black turpentine beetle (Coleoptera: Scolytidae) and other forest Coleoptera to turpentine-baited traps. Environ. Entomol. 14:768–775.

    Google Scholar 

  • Fatzinger, C. W., Siegfried, B. D., Wilkinson, R. C., and Nation, J. L. 1987. trans-Verbenol, turpentine, and ethanol as trap baits for the black turpentine beetle, Dendroctonus terebrans, and other forest Coleoptera in north Florida. J. Entomol. Sci. 22:201–209.

    CAS  Google Scholar 

  • Flint, M. L., Liu, D., Lee, J. C., Beiriger, R., Penrose, R. L., Bright, D. E., and Seybold, S. J. 2007. Responses of red haired pine bark beetle (RPBB), Hylurgus ligniperda, and associated subcortical Coleoptera to host volatiles in southern California. Poster at the 2007 Entomological Society of America Annual Meeting, San Diego CA, 9–12 December 2007 [http://esa.confex.com/recording/esa/2007/pdf/39845/b93fd97f75745ee041d14a6604829248/paper31213_1.pdf]

  • Franceschi, V. R., Krokene, P., Christiansen, E., and Krekling, T. 2005. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol 167:353–376.

    Article  PubMed  CAS  Google Scholar 

  • Furniss, R. L., and Carolin, V. M. 1977. Western forest insects. US Dept. Agriculture Forest Service, Misc. Pub. 1339. 654 pp.

  • Gara, R. I., Littke, W. R., and Rhoades, D. F. 1993. Emission of ethanol and monoterpenes by fungal infected lodgepole pine trees. Phytochemistry 34:987–990.

    Article  CAS  Google Scholar 

  • Glantz, S. A. 2005. Primer of Biostatistics. p. 520. McGraw-Hill Professional, New York.

    Google Scholar 

  • Graham, K. 1968. Anaerobic induction of primary chemical attractancy for ambrosia beetles. Can. J. Zool. 46:905–908.

    Article  Google Scholar 

  • Haack, R. A. 2001. Intercepted Scolytidae (Coleoptera) at U.S. ports of entry:1985–2000. Integr. Pest Manage. Rev. 6:253–282.

    Article  Google Scholar 

  • Haack, R. A. 2006. Exotic bark- and wood-boring Coleoptera in the United States: recent establishments and interceptions. Can. J. For. Res. 36:269–288.

    Article  Google Scholar 

  • Hobson, K. R., Wood, D. L., Cool, L. G., White, P. R., Ohtsuka, T., Kubo, I., and Zavarin, E. 1993. Chiral specificity in responses by the bark beetle Dendroctonus valens to host volatiles. J. Chem. Ecol. 19:1837–1846.

    Article  CAS  Google Scholar 

  • Hulcr, J., Mogia, M., Isua, B., and Novotny, V. 2007. Host specificity of ambrosia and bark beetles (Col., Curculionidae: Scolytinae and Platypodinae) in a New Guinea rainforest. Ecol. Entomol. 32:762–772.

    Article  Google Scholar 

  • Jordal, B. H., Beaver, R. A., and Kirkendall, L. R. 2001. Breaking taboos in the tropics: incest promotes colonization by wood-boring beetles. Glob Ecol. Biogeogr. 10:345–357.

    Article  Google Scholar 

  • Kelsey, R. G. 1994. Ethanol synthesis in Douglas-fir logs felled in November, January, and March and its relationship to ambrosia beetle attack. Can. J. For. Res. 24:2096–2104.

    Article  CAS  Google Scholar 

  • Kelsey, R. G., and Joseph, G. 1998. Ethanol in Douglas-fir with black-stain root disease (Leptographium wageneri). Can. J. For. Res. 28:1207–1212.

    Article  CAS  Google Scholar 

  • Kelsey, R. G., and Joseph, G. 2001. Attraction of Scolytus unispinosus bark beetles to ethanol in water-stressed Douglas-fir branches. For. Ecol. Manage. 144:229–238.

    Article  Google Scholar 

  • Kelsey, R. G., and Joseph, G. 2003. Ethanol in ponderosa pine as an indicator of physiological injury from fire and its relationship to secondary beetles. Can. J. For. Res. 33:870–884.

    Article  CAS  Google Scholar 

  • Kelsey, R. G., Joseph, G., and Thies, W. G. 1998. Sapwood and crown symptoms in ponderosa pine infected with black-stain and annosum root disease. For. Ecol. Manage. 111:181–191.

    Article  Google Scholar 

  • Klimetzek, D., Köhler, J., Vité, J. P., and Kohnle, U. 1986. Dosage response to ethanol mediates host selection by “secondary” bark beetles. Naturwissenschaften 73:270–271.

    Article  CAS  Google Scholar 

  • Kohnle, U. 1985. Investigations of chemical communication systems in secondary bark beetles (Col., Scolytidae). Z. Angew. Entomol. 100:197–218.

    CAS  Google Scholar 

  • Lee, J. C., Haack, R. A., Negrón, J. F., Witcosky, J. J., and Seybold, S. J. 2007. Invasive bark beetles. US Dept. Agriculture Forest Service, For. Insect & Disease Leafl. 176. 12 p.

  • Lindelöw, Ǻ., Eidmann, H. H., and Nordenheim, H. 1993. Response on the ground of bark beetle and weevil species colonizing conifer stumps and roots to terpenes and ethanol. J. Chem. Ecol. 19:1393–1403.

    Article  Google Scholar 

  • Lindgren, B. S. 1990. Ambrosia beetles. J. Forestry 88:8–11.

    Google Scholar 

  • Liu, Y., and Dai, H. 2006. Application of bark beetle semiochemicals for quarantine of bark beetles in China. J. Insect Sci. 6:41.

    Article  CAS  Google Scholar 

  • Markalas, S., and Kalapanida, M. 1997. Flight pattern of some Scolytidae attracted to flight barrier traps baited with ethanol in an oak forest in Greece. J. Pest Sci. 70:55–57.

    Google Scholar 

  • Miller, D. R. 2006. Ethanol and (–)-α-pinene: attractant kairomones for some large wood-boring beetles in southeastern USA. J. Chem. Ecol. 32:779–794.

    Article  PubMed  CAS  Google Scholar 

  • Mirov, N. T. 1961. Composition of gum turpentine of pines. US Dept. Agriculture Forest Service, Pacific Southwest Forest and Range Experiment Station Tech. Bull. 1239. 158 p.

  • Moeck, H. A. 1970. Ethanol as the primary attractant for the ambrosia beetle Trypodendron lineatum (Coleoptera: Scolytidae). Can. Entomol. 102:985–995.

    Google Scholar 

  • Montgomery, M. E., and Wargo, P. M. 1983. Ethanol and other host-derived volatiles as attractants to beetles that bore into hardwoods. J. Chem. Ecol. 9:181–190.

    Article  CAS  Google Scholar 

  • Oliver, J. B., and Mannion, C. M. 2001. Ambrosia beetle (Coleoptera: Scolytidae) species attacking chestnut and captured in ethanol-baited traps in middle Tennessee. Environ. Entomol. 30:909–918.

    Google Scholar 

  • Pepper, W. D., Zarnoch, S. J., DeBarr, G. L., de Groot, P., and Tangren, C. D. 1997. Choosing a transformation in analyses of insect counts from contagious distributions with low means. US Dept. Agriculture, Forest Service Research Paper SRS-5, Asheville NC.

  • Phillips, T. W. 1990. Responses of Hylastes salebrosus to turpentine, ethanol and pheromones of Dendroctonus (Coleoptera: Scolytidae). Florida Entomol. 73:286–292.

    Article  CAS  Google Scholar 

  • Phillips, T. W., Wilkening, A. J., Atkinson, T. H., Nation, J. L., Wilkinson, R. C., and Foltz, J. L. 1988. Synergism of turpentine and ethanol as attractants for certain pine-infesting beetles (Coleoptera). Environ. Entomol. 17:456–462.

    CAS  Google Scholar 

  • Rabaglia, R., Duerr, D., Acciavatti, R., and Ragenovich, I. 2008. Early detection and rapid response for non-native bark and ambrosia beetles. US Dept. Agriculture, Forest Service, Forest Health Protection, Washington, D.C., 12 p. [http://www.fs.fed.us/foresthealth/publications/EDRRProjectReport.pdf]

  • Raffa, K. F., Aukema, B. H., Erbilgin, N., Klepzig, K. D., and Wallin, K. F. 2005. Interactions among conifer terpenoids and bark beetles across multiple levels of scale: an attempt to understand links between population patterns and physiological processes 79–118, in J. T. Romeo (ed.). Chemical Ecology and Phytochemistry of Forest Ecosystems. Recent Advances Phytochem. 39

  • Roling, M. P., and Kearby, W. H. 1975. Seasonal flight and vertical distribution of Scolytidae attracted to ethanol in an oak-hickory forest in Missouri. Can. Entomol. 107:1315–1320.

    Google Scholar 

  • Rudinsky, J. A., Novák, V., and Švihra, P. 1971. Attraction of the bark beetle Ips typographus L. to terpenes and a male-produced pheromone. Z. Angew. Entomol. 67:179–188.

    Google Scholar 

  • Schroeder, L. M. 1988. Attraction of the bark beetle Tomicus piniperda and some other bark- and wood-boring beetles to the host volatiles α-pinene and ethanol. Entomol. Exp. Appl. 46:203–210.

    Article  CAS  Google Scholar 

  • Schroeder, L. M., and Eidmann, H. H. 1987. Gallery initiation by Tomicus piniperda (Coleoptera: Scolytidae) on Scots pine trees baited with host volatiles. J. Chem. Ecol. 13:1591–1599.

    Article  CAS  Google Scholar 

  • Schroeder, L. M., and Lindelöw, Ǻ. 1989. Attraction of scolytids and associated beetles by different absolute amounts and proportions of α-pinene and ethanol. J. Chem. Ecol. 15:807–817.

    Article  CAS  Google Scholar 

  • Seybold, S. J., Huber, D. P. W., Lee, J. C., Graves, A. D., and Bohlmann, J. 2006. Pine monoterpenes and pine bark beetles: a marriage of convenience for defense and chemical communication. Phytochem. Rev. 5:143–178.

    Article  CAS  Google Scholar 

  • Smith, R. H. 2000. Xylem monoterpenes of pines: distribution, variation, genetics, function. US Dept. Agriculture Forest Service General Tech. Rep. PSW-GTR-177. 454 p.

  • USDA APHIS. 2007. Plant health—pest detection. US Dept. of Agriculture, Animal and Plant Health Inspection Service [www.aphis.usda.gov/plant_health/plant_pest_info/pest_detection/background.shtml]

  • Werner, R. A. 1972. Aggregation behaviour of the beetle Ips grandicollis in response to host-produced attractants. J. Insect Physiol. 18:423–437.

    Article  CAS  Google Scholar 

  • Witcosky, J. J., Schowalter, T. D., and Hansen, E. M. 1987. Host-derived attractants for the beetles Hylastes nigrinus (Coleoptera: Scolytidae) and Steremnius carinatus (Coleoptera: Curculionidae). Environ. Entomol. 16:1310–1313.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank R. G. Kelsey, Assoc. Editor S. J. Seybold, B. T. Sullivan, and two anonymous referees for reviews of the manuscript; C. M. Crowe, C. Asaro, D. Johnson, and R. Brantley for field and laboratory assistance; D. E. Bright for identifications of Pityophthorus species; and the staffs at the Apalachicola, Bankhead, Nantahala, Ocala, Oconee, Osceola, and Sumter National Forests and Blue Valley Experimental Forest for assistance and permission to conduct these studies on their respective lands. The use of trade names and identification of firms or corporations does not constitute an official endorsement or approval by the US Government of any product or service to the exclusion of others that may be suitable. Funding for this research was provided by the USDA Forest Service. The USDA is an equal-opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, D.R., Rabaglia, R.J. Ethanol and (−)-α-Pinene: Attractant Kairomones for Bark and Ambrosia Beetles in the Southeastern US. J Chem Ecol 35, 435–448 (2009). https://doi.org/10.1007/s10886-009-9613-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-009-9613-9

Keywords

Navigation