Journal of Chemical Ecology

, Volume 35, Issue 2, pp 272–279 | Cite as

Effects of a Caenorhabditis elegans Dauer Pheromone Ascaroside on Physiology and Signal Transduction Pathways

  • Marco Gallo
  • Donald L. Riddle


Daumone is one of the three purified and artificially synthesized components of the Caenorhabditis elegans dauer pheromone. It affects the major signal transduction pathways known to discriminate between developmental arrest at the dauer stage and growth to the adult [the transforming growth factor beta (TGF-β) and daf-2/IGF1R pathways], just as natural pheromone extracts do. Transcription of daf-7/TGF-β is reduced in pre-dauer larvae, and nuclear localization of the DAF-16/FOXO transcription factor is increased in embryos and L1 larvae exposed to synthetic daumone. However, daumone does not require the cilia in the amphidial neurons to produce these effects nor does it require the Gα protein GPA-3 to induce dauer entry, although GPA-3 is required for dauer induction by natural dauer pheromone extracts. Synthetic daumone has physiological effects that have not been observed with natural pheromone. It is toxic at the concentrations required for bioassay and is lethal to mutants with defective cuticles. The molecular and physiological effects of daumone and natural dauer pheromone are only partially overlapping.


ASI neurons ASJ neurons Caenorhabditis elegans DAF-16 Dauer Dauer pheromone Daumone Gene expression Insulin signaling Physiology TGF-β Transcription 



We thank Victor Jensen, Nigel O’Neil, and Donha Park for helpful discussions. Some nematode strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the NIH National Center for Research Resources (NCRR). This work was supported by the Cordula and Gunter Paetzold University Graduate Fellowship and a Michael Smith Foundation for Health Research Senior Graduate Studentship to M.G. and the Canadian Institutes of Health Research (MOP 79458) to D.L.R.


  1. Baiga, T. J., Guo, H., Xing, Y., O’Doherty, G. A., Dillin, A., Austin, M. B., Noel, J. P., and LA Clair, J. J. 2008. Metabolite induction of Caenorhabditis elegans dauer larvae arises via transport in the pharynx. ACS Chem. Biol. 3:294–304.PubMedCrossRefGoogle Scholar
  2. Bargmann, C. I., and Horvitz, H. R. 1991. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science 251:1243–1246.PubMedCrossRefGoogle Scholar
  3. Berdichevsky, A., Viswanathan, M., Horvitz, H. R., and Guarente, L. 2006. C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 125:1165–1177.PubMedCrossRefGoogle Scholar
  4. Birnby, D. A., Link, E. M., Vowels, J. J., Tian, H., Colacurcio, P. L., and Thomas, J. H. 2000. A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in Caenorhabditis elegans. Genetics 155:85–104.PubMedGoogle Scholar
  5. Brenner, S. 1974. The genetics of Caenorhabditis elegans. Genetics 77:71–94.PubMedGoogle Scholar
  6. Butcher, R. A., Fujita, M., Schroeder, F. C., and Clardy, J. 2007. Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat. Chem. Biol. 3:420–422.PubMedCrossRefGoogle Scholar
  7. Butcher, R. A., Ragains, J. R., Kim, E., and Clardy, J. 2008. A potent dauer pheromone component in Caenorhabditis elegans that acts synergistically with other components. Proc. Natl. Acad. Sci. U.S.A. 105:14288–14292.PubMedCrossRefGoogle Scholar
  8. Cassada, R. C., and Russell, R. L. 1975. The dauer larva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev. Biol. 46:326–342.PubMedCrossRefGoogle Scholar
  9. Dulac, C., and Torello, A. T. 2003. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat. Rev. Neurosci. 4:551–562.PubMedCrossRefGoogle Scholar
  10. Gallo, M., Mah, A. K., Johnsen, R. C., Rose, A. M., and Baillie, D. L. 2006. Caenorhabditis elegans dpy-14: an essential collagen gene with unique expression profile and physiological roles in early development. Mol. Genet. Genomics 275:527–539.PubMedCrossRefGoogle Scholar
  11. Golden, J. W., and Riddle, D. L. 1984a. The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Dev. Biol. 102:368–378.PubMedCrossRefGoogle Scholar
  12. Golden, J. W., and Riddle, D. L. 1984b. A pheromone-induced developmental switch in Caenorhabditis elegans: temperature-sensitive mutants reveal a wild-type temperature-dependent process. Proc. Natl. Acad. Sci. U.S.A. 81:819–823.PubMedCrossRefGoogle Scholar
  13. Goy, M. F. 1991. cGMP: the wayward child of the cyclic nucleotide family. Trends Neurosci. 14:293–299.PubMedCrossRefGoogle Scholar
  14. Henderson, S. T., and Johnson, T. E. 2001. daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr. Biol. 11:1975–1980.PubMedCrossRefGoogle Scholar
  15. Jensen, V. L., Gallo, M., and Riddle, D. L. 2006. Targets of DAF-16 involved in Caenorhabditis elegans adult longevity and dauer formation. Exp. Gerontol. 41:922–927.PubMedCrossRefGoogle Scholar
  16. Jeong, P. Y., Jung, M., Yim, Y. H., Kim, H., Park, M., Hong, E., Lee, W., Kim, Y. H., Kim, K., and Paik, Y. K. 2005. Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature 433:541–535.PubMedCrossRefGoogle Scholar
  17. Jia, K., Albert, P. S., and Riddle, D. L. 2002. DAF-9, a cytochrome P450 regulating C. elegans larval development and adult longevity. Development 129:221–231.PubMedGoogle Scholar
  18. Kim, S., and Paik, Y. K. 2008. Developmental and reproductive consequences of prolonged non-aging dauer in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 368:588–592.PubMedCrossRefGoogle Scholar
  19. Klass, M., and Hirsh, D. 1976. Non-ageing developmental variant of Caenorhabditis elegans. Nature 260:523–525.PubMedCrossRefGoogle Scholar
  20. Kramer, J. M., French, R. P., Park, E. C., and Johnson, J. J. 1990. The Caenorhabditis elegans rol-6 gene, which interacts with the sqt-1 collagen gene to determine organismal morphology, encodes a collagen. Mol. Cell. Biol. 10:2081–2089.PubMedGoogle Scholar
  21. Lans, H., Rademakers, S., and Jansen, G. 2004. A network of stimulatory and inhibitory Galpha-subunits regulates olfaction in Caenorhabditis elegans. Genetics 167:1677–1687.PubMedCrossRefGoogle Scholar
  22. Lee, R. Y., Hench, J., and Ruvkun, G. 2001. Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr. Biol. 11:1950–1957.PubMedCrossRefGoogle Scholar
  23. Lin, K., Dorman, J. B., Rodan, A., and Kenyon, C. 1997. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322.PubMedCrossRefGoogle Scholar
  24. Ogg, S., Paradis, S., Gottlieb, S., Patterson, G. I., Lee, L., Tissenbaum, H. A., and Ruvkun, G. 1997. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389:994–999.PubMedCrossRefGoogle Scholar
  25. Paradis, S., and Ruvkun, G. 1998. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev. 12:2488–2498.PubMedCrossRefGoogle Scholar
  26. Qin, H., Rosenbaum, J. L., and Barr, M. M. 2001. An autosomal recessive polycystic kidney disease gene homolog is involved in intraflagellar transport in C. elegans ciliated sensory neurons. Curr. Biol. 11:457–461.PubMedCrossRefGoogle Scholar
  27. Ren, P., Lim, C. S., Johnsen, R., Albert, P. S., Pilgrim, D., and Riddle, D. L. 1996. Control of C. elegans larval development by neuronal expression of a TGF-beta homolog. Science 274:1389–1391.PubMedCrossRefGoogle Scholar
  28. Riddle, D. L., and Albert, P. S. 1997. Genetic and environmental regulation of dauer larva development, pp. 739–768, in D. L. Riddle, T. Blumenthal, B. Meyer, and J. Priess (eds.). C. elegans IICold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  29. Rogalski, T. M., Golomb, M., and Riddle, D. L. 1990. Mutant Caenorhabditis elegans RNA polymerase II with a 20,000-fold reduced sensitivity to alpha-amanitin. Genetics 126:889–898.PubMedGoogle Scholar
  30. Seoane, J., Le, H. V., Shen, L., Anderson, S. A., and Massague, J. 2004. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117:211–223.PubMedCrossRefGoogle Scholar
  31. Snow, M. I., and Larsen, P. L. 2000. Structure and expression of daf-12: a nuclear hormone receptor with three isoforms that are involved in development and aging in Caenorhabditis elegans. Biochim. Biophys. Acta 1494:104–116.Google Scholar
  32. Zwaal, R. R., Mendel, J. E., Sternberg, P. W., and Plasterk, R. H. 1997. Two neuronal G proteins are involved in chemosensation of the Caenorhabditis elegans Dauer-inducing pheromone. Genetics 145:715–727.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Medical GeneticsThe University of British ColumbiaVancouverCanada
  2. 2.Michael Smith LaboratoriesThe University of British ColumbiaVancouverCanada

Personalised recommendations