Skip to main content

Advertisement

Log in

Effects of a Caenorhabditis elegans Dauer Pheromone Ascaroside on Physiology and Signal Transduction Pathways

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Daumone is one of the three purified and artificially synthesized components of the Caenorhabditis elegans dauer pheromone. It affects the major signal transduction pathways known to discriminate between developmental arrest at the dauer stage and growth to the adult [the transforming growth factor beta (TGF-β) and daf-2/IGF1R pathways], just as natural pheromone extracts do. Transcription of daf-7/TGF-β is reduced in pre-dauer larvae, and nuclear localization of the DAF-16/FOXO transcription factor is increased in embryos and L1 larvae exposed to synthetic daumone. However, daumone does not require the cilia in the amphidial neurons to produce these effects nor does it require the Gα protein GPA-3 to induce dauer entry, although GPA-3 is required for dauer induction by natural dauer pheromone extracts. Synthetic daumone has physiological effects that have not been observed with natural pheromone. It is toxic at the concentrations required for bioassay and is lethal to mutants with defective cuticles. The molecular and physiological effects of daumone and natural dauer pheromone are only partially overlapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baiga, T. J., Guo, H., Xing, Y., O’Doherty, G. A., Dillin, A., Austin, M. B., Noel, J. P., and LA Clair, J. J. 2008. Metabolite induction of Caenorhabditis elegans dauer larvae arises via transport in the pharynx. ACS Chem. Biol. 3:294–304.

    Article  PubMed  CAS  Google Scholar 

  • Bargmann, C. I., and Horvitz, H. R. 1991. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science 251:1243–1246.

    Article  PubMed  CAS  Google Scholar 

  • Berdichevsky, A., Viswanathan, M., Horvitz, H. R., and Guarente, L. 2006. C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 125:1165–1177.

    Article  PubMed  CAS  Google Scholar 

  • Birnby, D. A., Link, E. M., Vowels, J. J., Tian, H., Colacurcio, P. L., and Thomas, J. H. 2000. A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in Caenorhabditis elegans. Genetics 155:85–104.

    PubMed  CAS  Google Scholar 

  • Brenner, S. 1974. The genetics of Caenorhabditis elegans. Genetics 77:71–94.

    PubMed  CAS  Google Scholar 

  • Butcher, R. A., Fujita, M., Schroeder, F. C., and Clardy, J. 2007. Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat. Chem. Biol. 3:420–422.

    Article  PubMed  CAS  Google Scholar 

  • Butcher, R. A., Ragains, J. R., Kim, E., and Clardy, J. 2008. A potent dauer pheromone component in Caenorhabditis elegans that acts synergistically with other components. Proc. Natl. Acad. Sci. U.S.A. 105:14288–14292.

    Article  PubMed  CAS  Google Scholar 

  • Cassada, R. C., and Russell, R. L. 1975. The dauer larva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev. Biol. 46:326–342.

    Article  PubMed  CAS  Google Scholar 

  • Dulac, C., and Torello, A. T. 2003. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat. Rev. Neurosci. 4:551–562.

    Article  PubMed  CAS  Google Scholar 

  • Gallo, M., Mah, A. K., Johnsen, R. C., Rose, A. M., and Baillie, D. L. 2006. Caenorhabditis elegans dpy-14: an essential collagen gene with unique expression profile and physiological roles in early development. Mol. Genet. Genomics 275:527–539.

    Article  PubMed  CAS  Google Scholar 

  • Golden, J. W., and Riddle, D. L. 1984a. The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Dev. Biol. 102:368–378.

    Article  PubMed  CAS  Google Scholar 

  • Golden, J. W., and Riddle, D. L. 1984b. A pheromone-induced developmental switch in Caenorhabditis elegans: temperature-sensitive mutants reveal a wild-type temperature-dependent process. Proc. Natl. Acad. Sci. U.S.A. 81:819–823.

    Article  PubMed  CAS  Google Scholar 

  • Goy, M. F. 1991. cGMP: the wayward child of the cyclic nucleotide family. Trends Neurosci. 14:293–299.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, S. T., and Johnson, T. E. 2001. daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr. Biol. 11:1975–1980.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, V. L., Gallo, M., and Riddle, D. L. 2006. Targets of DAF-16 involved in Caenorhabditis elegans adult longevity and dauer formation. Exp. Gerontol. 41:922–927.

    Article  PubMed  CAS  Google Scholar 

  • Jeong, P. Y., Jung, M., Yim, Y. H., Kim, H., Park, M., Hong, E., Lee, W., Kim, Y. H., Kim, K., and Paik, Y. K. 2005. Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature 433:541–535.

    Article  PubMed  CAS  Google Scholar 

  • Jia, K., Albert, P. S., and Riddle, D. L. 2002. DAF-9, a cytochrome P450 regulating C. elegans larval development and adult longevity. Development 129:221–231.

    PubMed  CAS  Google Scholar 

  • Kim, S., and Paik, Y. K. 2008. Developmental and reproductive consequences of prolonged non-aging dauer in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 368:588–592.

    Article  PubMed  CAS  Google Scholar 

  • Klass, M., and Hirsh, D. 1976. Non-ageing developmental variant of Caenorhabditis elegans. Nature 260:523–525.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, J. M., French, R. P., Park, E. C., and Johnson, J. J. 1990. The Caenorhabditis elegans rol-6 gene, which interacts with the sqt-1 collagen gene to determine organismal morphology, encodes a collagen. Mol. Cell. Biol. 10:2081–2089.

    PubMed  CAS  Google Scholar 

  • Lans, H., Rademakers, S., and Jansen, G. 2004. A network of stimulatory and inhibitory Galpha-subunits regulates olfaction in Caenorhabditis elegans. Genetics 167:1677–1687.

    Article  PubMed  CAS  Google Scholar 

  • Lee, R. Y., Hench, J., and Ruvkun, G. 2001. Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr. Biol. 11:1950–1957.

    Article  PubMed  CAS  Google Scholar 

  • Lin, K., Dorman, J. B., Rodan, A., and Kenyon, C. 1997. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322.

    Article  PubMed  CAS  Google Scholar 

  • Ogg, S., Paradis, S., Gottlieb, S., Patterson, G. I., Lee, L., Tissenbaum, H. A., and Ruvkun, G. 1997. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389:994–999.

    Article  PubMed  CAS  Google Scholar 

  • Paradis, S., and Ruvkun, G. 1998. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev. 12:2488–2498.

    Article  PubMed  CAS  Google Scholar 

  • Qin, H., Rosenbaum, J. L., and Barr, M. M. 2001. An autosomal recessive polycystic kidney disease gene homolog is involved in intraflagellar transport in C. elegans ciliated sensory neurons. Curr. Biol. 11:457–461.

    Article  PubMed  CAS  Google Scholar 

  • Ren, P., Lim, C. S., Johnsen, R., Albert, P. S., Pilgrim, D., and Riddle, D. L. 1996. Control of C. elegans larval development by neuronal expression of a TGF-beta homolog. Science 274:1389–1391.

    Article  PubMed  CAS  Google Scholar 

  • Riddle, D. L., and Albert, P. S. 1997. Genetic and environmental regulation of dauer larva development, pp. 739–768, in D. L. Riddle, T. Blumenthal, B. Meyer, and J. Priess (eds.). C. elegans IICold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Rogalski, T. M., Golomb, M., and Riddle, D. L. 1990. Mutant Caenorhabditis elegans RNA polymerase II with a 20,000-fold reduced sensitivity to alpha-amanitin. Genetics 126:889–898.

    PubMed  CAS  Google Scholar 

  • Seoane, J., Le, H. V., Shen, L., Anderson, S. A., and Massague, J. 2004. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117:211–223.

    Article  PubMed  CAS  Google Scholar 

  • Snow, M. I., and Larsen, P. L. 2000. Structure and expression of daf-12: a nuclear hormone receptor with three isoforms that are involved in development and aging in Caenorhabditis elegans. Biochim. Biophys. Acta 1494:104–116.

    CAS  Google Scholar 

  • Zwaal, R. R., Mendel, J. E., Sternberg, P. W., and Plasterk, R. H. 1997. Two neuronal G proteins are involved in chemosensation of the Caenorhabditis elegans Dauer-inducing pheromone. Genetics 145:715–727.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Victor Jensen, Nigel O’Neil, and Donha Park for helpful discussions. Some nematode strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the NIH National Center for Research Resources (NCRR). This work was supported by the Cordula and Gunter Paetzold University Graduate Fellowship and a Michael Smith Foundation for Health Research Senior Graduate Studentship to M.G. and the Canadian Institutes of Health Research (MOP 79458) to D.L.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald L. Riddle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallo, M., Riddle, D.L. Effects of a Caenorhabditis elegans Dauer Pheromone Ascaroside on Physiology and Signal Transduction Pathways. J Chem Ecol 35, 272–279 (2009). https://doi.org/10.1007/s10886-009-9599-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-009-9599-3

Keywords

Navigation