Advertisement

Journal of Chemical Ecology

, Volume 34, Issue 11, pp 1492–1500 | Cite as

Phytotoxic Effects of Leukamenin E (an ent-kaurene diterpenoid) on Root Growth and Root Hair Development in Lactuca sativa L. seedlings

  • Lan Ding
  • Linlin Qi
  • Hongwei Jing
  • Juan Li
  • Wei Wang
  • Tao Wang
Article

Abstract

Leukamenin E, an ent-kaurene diterpenoid isolated from Isodon racemosa (Hemsl) Hara, showed phytotoxic effects on root growth and root hair development of lettuce seedlings (Lactuca sativa L.). Lower concentrations (10 µM) of leukamenin E did not affect root growth, but at concentrations higher than 50 µM, the rate was inhibited. The influence of leukamenin E on root growth rate was closely correlated with alterations in the mitotic index. A low incidence of aberrant mitosis image was observed when lettuce roots were treated with higher concentrations (100 and 200 µM) of leukamenin E. This suggests that inhibition of root growth may be due to inhibition of cell division. All tested concentrations of the diterpenoid (10 µM or more) inhibited root hair development in a dose-dependent manner. At a concentration of 80 µM, leukamenin E completely blocked root hair initiation. Application of Ag+—an ethylene action inhibitor—to lettuce seedlings inhibited root hair elongation similar to the diterpenoid. Enhanced root hair length was stimulated by exogenous ethephon—an ethylene-releasing agent—and could be reversed by addition of leukamenin E. This suggests that leukamenin E may act as a potential ethylene action antagonist in the inhibition of lettuce root hair development. We conclude that leukamenin E may curb root hair development by interfering with ethylene action at concentrations above 10 µM and inhibits root growth via inhibition of cell division at concentrations above 50 µM.

Keywords

Ent-kaurene diterpenoid Lactuca sativa L. Phytotoxicity Root growth Mitotic activity Root hairs Ethylene antagonist 

Notes

Acknowledgements

This research was supported by the Key Project of Chinese Ministry of Education (No. 208147). Gratitude is also given to the two anonymous reviewers and editors whose suggestions greatly improved the manuscript.

References

  1. Abrahim, D., Braguini, W. L., Kelmer-Bracht, A. M., and Ishii-Iwamoto, E. L. 2000. Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize. J. Chem. Ecol. 26:611–624.CrossRefGoogle Scholar
  2. Abrahim, D., Takahashi, L., Kelmer-Bracht, A. M., and Ishii-Iwamoto, E. L. 2003. Effects of phenolic acids and monoterpenes on the mitochondrial respiration of soybean hypocotyls axes. Allelopathy J. 11:21–30.Google Scholar
  3. Aerts, R., Boot, R. G. A., and Van Der Aart, P. J. M. 1991. The relation between above- and belowground biomass allocation patterns and competitive ability. Oecologia 87:4551–559.CrossRefGoogle Scholar
  4. Akinboro, A., and Bakare, A. A. 2007. Cytotoxic and genotoxic effects of aqueous extracts of five medicinal plants on Allium cepa Linn. J. Ethnopharmacol. 112:470–475.PubMedCrossRefGoogle Scholar
  5. Bibikova, T., and Gilroy, S. 2003. Root hair development. J. Plant Growth Regul. 21:383–415.CrossRefGoogle Scholar
  6. Borboa, L., and De La Torre, C. 2000. Adaptation to Cd (II) and Zn (II), and the caffeine-potentiated override of the G2 block induced by the checkpoint activated by DNA damage. Plant Biosyst. 134:3–9.CrossRefGoogle Scholar
  7. Cangiano, T., Dellagreca, M., Fiorentino, A., Isidori, M., Monaco, P., and Zarrelli, A. 2002. Effect of ent-labdane diterpenes from Potamogetonaceae on Selenastrum capricornutum and other aquatic organisms. J. Chem. Ecol. 28:1091–1102.PubMedCrossRefGoogle Scholar
  8. Den Boer, B. G. W., and Murray, J. A. H. 2000. Triggering the cell cycle in plants. Trends Cell Biol. 10:245–250.PubMedCrossRefGoogle Scholar
  9. Ding, L., Liu, G. A., Wang, L., Sun, K., and Wang, H. 2006. Cytotoxic ent-kaurane diterpenoids from Isodon racemosa (Hemsl) Hara. Indian J. Chem. 45:548–551.Google Scholar
  10. Fusconi, A., Gallo, C., and Camusso, W. 2007. Effects of cadmium on root apical meristems of Pisum sativum L.: cell viability, cell proliferation and microtubule pattern as suitable markers for assessment of stress pollution. Mutat. Res. 632:9–19.PubMedGoogle Scholar
  11. Han, Q. B., Zhang, J. X., Lu, Y., Wu, Y. S., Zheng, Q. T., and Sun, H. D. 2004. A novel cytotoxic oxetane ent-kauranoid from Isodon japonicus. Planta Med. 70:581–584.PubMedCrossRefGoogle Scholar
  12. Jiang, B., Lu, Z. Q., Hou, A. J., Zhao, Q. S., and Sun, H. D. 1999. ent-Kaurane diterpenoids from Isodon lungshengensis. J. Nat. Prod. 62:941–945.PubMedCrossRefGoogle Scholar
  13. Kamaluddin, M., and Zwiazek, J. J. 2002. Ethylene enhances water transport in hypoxic aspen. Plant Physiol. 128:962–969.PubMedCrossRefGoogle Scholar
  14. Koitabashi, R., Suzuki, T., Kawazu, T., Sakai, A., Kuroiwa, H., and Kuroiwa, T. 1997. 1,8-cineole inhibits root growth and DNA synthesis in the root apical meristem of Brassica campestris L. J. Plant Res. 110:1–6.CrossRefGoogle Scholar
  15. König, G. M., Wright, A. D., Aust, H.-J., Draeger, S., and Schulz, B. 1999. Geniculol, a new biologically active diterpene from the endophytic fungus Geniculosporium sp. J. Nat. Prod. 62:155–157.PubMedCrossRefGoogle Scholar
  16. Li, H. J., and Guo, H. W. 2007. Molecular basis of the ethylene signaling and response pathway in Arabidopsis. J. Plant Growth Regul. 26:106–117.CrossRefGoogle Scholar
  17. Macías, F. A., Molinillo, J. M. G., Galindo, J. C. G., Varela, R. M., Torres, A., and Simonet, A. M. 1999. Terpenoids with potential use as natural herbicide templates, pp. 15–31, in H. G. Cutler, and S. J. Cutler (eds.). Biologically Active Natural Products: AgrochemicalsCRC, Boca Raton.Google Scholar
  18. Macías, F. A., Varela, R. M., Simonet, A. M., Cutler, H. G., Cutler, S. J., Ross, S. A., Dunbar, D. C., Dugan, F. M., and Hill, R. A. 2000. (+)-Brevione A. The first member of a novel family of bioactive spiroditerpenoids isolated from Penicillium brevicompactum Dierckx. Tetrahedron Lett. 41:2683–2686.CrossRefGoogle Scholar
  19. Morales-Flores, F., Aguilar, M. I., King-Díaz, B., De Santiago-Gómez, J.-R., and Lotina-Hennsen, B. 2007. Natural diterpenes from Croton ciliatoglanduliferus as photosystem II and photosystem I inhibitors in spinach chloroplasts. Photosynth. Res. 91:71–80.PubMedCrossRefGoogle Scholar
  20. Nishida, N., Tamotsu, S., Nagata, N., Saito, C., and Sakai, A. 2005. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J. Chem. Ecol. 31:1187–1203.PubMedCrossRefGoogle Scholar
  21. Pan, J. W., Zhu, M. Y., and Chen, H. 2001. Aluminum-induced cell death in root-tip cells of barley. Envir. Exp. Bot. 46:71–79.CrossRefGoogle Scholar
  22. Parker, J. S., Cavell, A. C., Dolan, L., Roberts, K., and Grierson, C. S. 2000. Genetic interactions during root hair morphogenesis in Arabidopsis. Plant Cell 12:1961–1974.PubMedCrossRefGoogle Scholar
  23. Rasmussen, J. A., and Einhellig, F. A. 1979. Inhibitory effects of combinations of three phenolic acids on grain sorghum germination. Plant Sci. Lett. 14:69–74.CrossRefGoogle Scholar
  24. Rodríguez, F. I., Esch, J. J., Hall, A. E., Binder, B. M., Schaller, G. E., and Bleecker, A. B. 1999. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283:996–998.PubMedCrossRefGoogle Scholar
  25. Romagni, J. G., Allen, S. N., and Dayan, F. E. 2000. Allelopathic effects of volatile cineoles on two weedy plant species. J. Chem. Ecol. 26:303–313.CrossRefGoogle Scholar
  26. Ryan, E., Steer, M., and Dolan, L. 2001. Cell biology and genetics of root hair formation in Arabidopsis thaliana. Protoplasma 215:140–149.PubMedCrossRefGoogle Scholar
  27. Sisler, E. C., Grichko, V. P., and Serek, M. 2006. Interaction of ethylene and other compounds with the ethylene receptor: Agonists and antagonists, in N. A. Khan (ed.). Ethylene Action in PlantsSpringer, Heidelberg.Google Scholar
  28. Sun, H. D., Xu, Y. L., and Jiang, B. 2001. Diterpenoids from Isodon Species. Science, Beijing.Google Scholar
  29. Suzuki, I., Kondoh, M., Nagashima, F., Fujii, M., Asakawa, Y., and Watanabe, Y. 2004. A comparison of apoptosis and necrosis induced by ent-kaurene type diterpenoids in HL-60 cells. Planta Med. 70:401–406.PubMedCrossRefGoogle Scholar
  30. Takeda, Y., Fujita, T., and Ueno, A. 1981. Structure of Leukamenins. Chem. Lett. 10:1229–1232.CrossRefGoogle Scholar
  31. Tengchaisri, T., Chawengkirttikul, R., Rachaphaew, N., Reutrakul, V., Sangsuwan, R., and Sirisinha, S. 1998. Antitumor activity of triptolide against cholangiocarcinoma growth in vitro and in hamsters. Cancer Lett. 133:169–175.PubMedCrossRefGoogle Scholar
  32. Yang, X. H., Owens, T. G., Scheffler, B. E., and Weston, L. A. 2004. Manipulation of root hair development and sorgoleone production in sorghum seedlings. J. Chem. Ecol. 30:199–213.PubMedCrossRefGoogle Scholar
  33. Zunino, M. P., and Zygadlo, J. A. 2004. Effect of monoterpenes on lipid oxidation in maize. Planta 219:303–309.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lan Ding
    • 1
  • Linlin Qi
    • 1
  • Hongwei Jing
    • 1
  • Juan Li
    • 1
  • Wei Wang
    • 1
  • Tao Wang
    • 1
  1. 1.College of Life SciencesNorthwest Normal UniversityLanzhouPeople’s Republic of China

Personalised recommendations