Journal of Chemical Ecology

, Volume 34, Issue 10, pp 1360–1367 | Cite as

Intraspecific Variation in Plant Defense Alters Effects of Root Herbivores on Leaf Chemistry and Aboveground Herbivore Damage

  • Susanne Wurst
  • Nicole M. Van Dam
  • Fernando Monroy
  • Arjen Biere
  • Wim H. Van der Putten


Root herbivores can indirectly affect aboveground herbivores by altering the food quality of the plant. However, it is largely unknown whether plant genotypes differ in their response to root herbivores, leading to variable defensive phenotypes. In this study, we investigated whether root-feeding insect larvae (Agriotes sp. larvae, wireworms) induce different responses in Plantago lanceolata plants from lines selected for low and high levels of iridoid glycosides (IG). In the absence of wireworms, plants of the “high-IG line” contained approximately twofold higher levels of total IG and threefold higher levels of catalpol (one of the IG) in leaves than plants from the “low-IG line,” whereas both lines had similar levels of IG in roots. In response to wireworms, roots of plants from both lines showed increased concentrations of catalpol. Leaves of “low-IG line” plants increased catalpol concentrations in response to wireworms, whereas catalpol concentrations of leaves of “high-IG line” plants decreased. In contrast, glucose concentrations in roots of “low-IG” plants decreased, while they increased in “high-IG” plants after feeding by wireworms. The leaf volatile profile differed between the lines, but was not affected by root herbivores. In the field, leaf damage by herbivores was higher in wireworm-induced compared to noninduced “low-IG” plants and lower in wireworm-induced compared to noninduced “high-IG” plants, despite induction of catalpol in leaves of the “low-IG” plants and reduction in “high-IG” plants. This pattern might arise if damage is caused mainly by specialist herbivores for which catalpol may act as feeding stimulant rather than as deterrent. The present study documents for the first time that intraspecific variation in plant defense affects the outcome of plant-mediated interactions between root and shoot herbivores.


Plantago lanceolata Wireworms Iridoid glycosides Volatiles Herbivory Induced defense Belowground–aboveground interactions 



We thank Wiecher Smant for analyzing plant N and C concentrations, Sander Van Beersum for determining the arbuscular mycorrhizal fungi colonization of the roots, and Kees Hordijk for the gas chromatography–mass spectrometry measurements. The study was financed by the EU-funded Marie-Curie training network BIORHIZ (“Biotic Interactions in the Rhizosphere as Structuring Forces for Plant Communities,” MRTN-CT-2003-505090). Publication 4324 Netherlands Institute of Ecology (NIOO-KNAW).


  1. Adler, L. S., Schmitt, J., and Bowers, M. D. 1995. Genetic variation in defensive chemistry in Plantago lanceolata (Plantaginaceae) and its effect on the specialist herbivore Junonia coenia (Nymphalidae). Oecologia 101:75–85.CrossRefGoogle Scholar
  2. Agrawal, A. A., and Karban, R. 1999. Why induced defenses may be favored over constitutive strategies in plants, in R. Tollrian, and C. D. Harvell (eds.). The Ecology and Evolution of Inducible DefensesPrinceton University Press, Princeton.Google Scholar
  3. Bezemer, T. M., and Van Dam, N. M. 2005. Linking aboveground and belowground interactions via induced plant defenses. TREE 20:617–624.PubMedGoogle Scholar
  4. Bezemer, T. M., Wagenaar, R., Van Dam, N. M., and Wäckers, F. L. 2003. Interactions between above- and belowground insect herbivores as mediated by the plant defense system. Oikos 101:555–562.CrossRefGoogle Scholar
  5. Bezemer, T. M., Wagenaar, R., Van Dam, N. M., Van der Putten, W. H., and Wäckers, F. L. 2004. Above- and below-ground terpenoid aldehyde induction in cotton, Gossypium herbaceum, following root and leaf injury. J. Chem. Ecol. 30:53–67.PubMedCrossRefGoogle Scholar
  6. Biere, A., Marak, H. B., and Van Damme, J. M. M. 2004. Plant chemical defense against herbivores and pathogens: generalized defense or trade-offs? Oecologia 140:3430–441.PubMedCrossRefGoogle Scholar
  7. Birch, A. N. E., Griffiths, D. W., Hopkins, R. J., Smith, W. H. M., and Mckinlay, R. G. 1992. Glucosinolate responses of swede, kale, forage and oilseed rape to root damage by turnip root fly (Delia floralis) larvae. J. Sci. Food Agric. 60:1–9.CrossRefGoogle Scholar
  8. Borowicz, V. A., Albrecht, U., and Mayer, R. T. 2003. Effects of nutrient supply on citrus resistance to root herbivory by Diaprepes abbreviatus L. (Coleoptera: Curculionidae). Environ. Entomol. 32:1242–1250.CrossRefGoogle Scholar
  9. Bowers, M. D. 1983. The role of iridoid glycosides in host-plant specificity of checkerspot butterflies. J. Chem. Ecol. 9:475–493.CrossRefGoogle Scholar
  10. Bowers, M. D., and Puttick, G. M. 1988. Response of generalist and specialist insects to qualitative allelochemical variation. J. Chem. Ecol. 14:319–334.CrossRefGoogle Scholar
  11. Bowers, M. D., and Stamp, N. E. 1992. Chemical variation within and between individuals of Plantago lanceolata (Plantaginaceae). J. Chem. Ecol. 18:985–995.CrossRefGoogle Scholar
  12. Darrow, K., and Bowers, M. D. 1999. Effects of herbivore damage and nutrient level on induction of iridoid glycosides in Plantago lanceolata. J. Chem. Ecol. 25:61427–1440.CrossRefGoogle Scholar
  13. Dicke, M. 1999. Evolution of induced indirect defense of plants, in R. Tollrian, and C. D. Harvell (eds.). The Ecology and Evolution of Inducible DefensesPrinceton University Press, Princeton.Google Scholar
  14. Gange, A. C. 2001. Specie-specific responses of a root- and shoot-feeding insect to arbuscular mycorrhizal colonization of its host plant. New Phytol. 150:611–618.CrossRefGoogle Scholar
  15. Gange, A. C., and West, H. M. 1994. Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytol. 128:79–87.CrossRefGoogle Scholar
  16. Gange, A. C., Brown, V. K., and Sinclair, G. S. 1994. Reduction of black vine weevil larval growth by vesicular–arbuscular mycorrhizal infection. Entomol. Exp. Appl. 70:115–119.CrossRefGoogle Scholar
  17. Karban, R., and Baldwin, I. T. 1997. Induced Responses to Herbivory. The University of Chicago Press, Chicago.Google Scholar
  18. Lepš, J., and Šmilauer, P. 2003. Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge.Google Scholar
  19. Marak, H. B., Biere, A., and Van Damme, J. M. M. 2000. Direct and correlated responses to selection on iridoid glycosides in Plantago lanceolata L. J. Evol. Biol. 13:985–996.CrossRefGoogle Scholar
  20. Marak, H. B., Biere, A., and Van Damme, J. M. M. 2002a. Two herbivore-deterrent iridoid glycosides reduce the in-vitro growth of a specialist but not of a generalist pathogenic fungus of Plantago lanceolata L. Chemoecology 12:185–192.CrossRefGoogle Scholar
  21. Marak, H. B., Biere, A., and Van Damme, J. M. M. 2002b. Systemic, genotype-specific induction of two herbivore-deterrent iridoid glycosides in Plantago lanceolata L. in response to fungal infection by Diaporthe adunca (Rob.) Niessel. J. Chem. Ecol. 28:2429–2448.PubMedCrossRefGoogle Scholar
  22. Marak, H. B., Biere, A., and Van Damme, J. M. M. 2003. Fitness costs of chemical defense in Plantago lanceolata L.: effects of nutrient and competition stress. Evolution 57:2519–2530.PubMedGoogle Scholar
  23. Masters, G. J., Brown, V. K., and Gange, A. C. 1993. Plant mediated interactions between above- and below-ground insect herbivores. Oikos 66:148–151.CrossRefGoogle Scholar
  24. Moran, N. A., and Whitham, T. G. 1990. Interspecific competition between root-feeding and leaf-galling aphids mediated by host-plant resistance. Ecology 71:1050–1058.CrossRefGoogle Scholar
  25. Poveda, K., Steffan-Dewenter, I., Scheu, S., and Tscharntke, T. 2005. Effects of decomposers and herbivores on plant performance and aboveground plant–insect interactions. Oikos 108:503–510.CrossRefGoogle Scholar
  26. Soler, R., Bezemer, T. M., Van der Putten, W. H., Vet, L. E. M., and Harvey, J. A. 2005. Root herbivore effects on above-ground herbivore, parasitoid and hyperparasitoid performance via changes in plant quality. J. Anim. Ecol. 74:1121–1130.CrossRefGoogle Scholar
  27. Soler, R., Harvey, J. A., Kamp, A. F. D., Vet, L. E. M., Van der Putten, W. H., Van Dam, N. M., Stuefer, J. F., Gols, R., Hordijk, C. A., and Bezemer, T. M. 2007. Root herbivores influence the behavior of an aboveground parasitoid through changes in plant-volatile signals. Oikos 116:367–376.CrossRefGoogle Scholar
  28. Staley, J. T., Hodgson, C. J., Mortimer, S. R., Morecroft, M. D., Masters, G. J., Brown, V. K., and Taylor, M. E. 2007. Effects of summer rainfall manipulations on the abundance and vertical distribution of herbivorous soil macro-invertebrates. Eur. J. Soil Biol. 43:189–198.CrossRefGoogle Scholar
  29. Van Dam, N. M., and Raaijmakers, C. E. 2006. Local and systemic induced responses to cabbage root fly larvae (Delia radicum) in Brassica nigra and B. oleracea. Chemoecology 16:17–24.CrossRefGoogle Scholar
  30. Van Dam, N. M., Harvey, J. A., Wäckers, F. L., Bezemer, T. M., Van der Putten, W. H., and Vet, L. E. M. 2003. Interactions between aboveground and belowground induced responses against phytophages. Basic Appl. Ecol. 4:63–77.CrossRefGoogle Scholar
  31. Van Dam, N. M., Raaijmakers, C. E., and Van der Putten, W. H. 2005. Root herbivory reduces growth and survival of the shoot feeding specialist Pieris rapae on Brassica nigra. Entomol. Exp. Appl. 115:161–170.CrossRefGoogle Scholar
  32. Van der Putten, W. H., Vet, L. E. M., Harvey, J. A., and Wäckers, F. L. 2001. Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. TREE 16:547–554.Google Scholar
  33. Willinger, G., and Dobler, S. 2001. Selective sequestration of iridoid glycosides from their host plants in Longitarsus flea beetles. Biochem. Syst. Ecol. 29:335–346.PubMedCrossRefGoogle Scholar
  34. Wurst, S., and Van der Putten, W. H. 2007. Root herbivore identity matters in plant-mediated interactions between root and shoot herbivores. Basic Appl. Ecol. 8:491–499.CrossRefGoogle Scholar
  35. Wurst, S., Dugassa-Gobena, D., Langel, R., Bonkowski, M., and Scheu, S. 2004. Combined effects of earthworms and vesicular–arbuscular mycorrhizas on plant and aphid performance. New Phytol. 163:169–176.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Susanne Wurst
    • 1
    • 2
  • Nicole M. Van Dam
    • 1
  • Fernando Monroy
    • 3
  • Arjen Biere
    • 1
  • Wim H. Van der Putten
    • 1
  1. 1.Netherlands Institute of Ecology (NIOO-KNAW)Centre for Terrestrial EcologyHeterenThe Netherlands
  2. 2.Ökologie der PflanzenFreie Universität BerlinBerlinGermany
  3. 3.Departamento de Ecoloxía e Bioloxía AnimalUniversidade de VigoVigoSpain

Personalised recommendations