Journal of Chemical Ecology

, Volume 34, Issue 6, pp 772–782 | Cite as

Variation of Insect Attracting Odor in Endophytic Epichloë Fungi: Phylogenetic Constrains Versus Host Influence

  • Fabrizio Steinebrunner
  • Florian P. Schiestl
  • Adrian Leuchtmann


Odor is a key trait for pollinator attraction in flowering plants, and many studies have investigated odor evolution in the light of pollinator selection by emphasizing the importance of the plant phylogenetic history. By contrast, little is known on the evolution of odors in fungus–insect interactions. In this study, profiles of three volatile compounds that are emitted by grass-inhabiting Epichloë fungi (Clavicipitaceae, Ascomycota) and that have a confirmed or likely role in the attraction of gamete-transferring Botanophila flies were investigated. We collected headspace samples from stromata of six European Epichloë species (including various host races) that originated from different locations in Switzerland, France, Poland, and UK for conducting gas chromatography analyses. Odor profiles exhibited considerable variation, but profiles of most species overlapped and did not discriminate at the species level. The exception was Epichloë festucae, which had a profile dominated by methyl (Z)-3-methyldodec-2-enoate. Based on an Epichloë phylogeny, there was some hierarchical structuring regarding levels of chokol K, another confirmed Botanophila attractant. However, patterns of odor profiles appeared to be largely dependant on particular Epichloë–host associations. The observed variation may be the result of complex selective pressures imposed by Botanophila gametic vectors, local environment, and mycoparasites.


Chokol K Methyl (Z)-3-methyldodec-2-enoate Odor communication Botanophila Epichloë endophytes 



The authors thank Jakov Bolotin for help with MS analyses and Sophie Karrenberg for statistical advice. This research was funded by Swiss National Science Foundation grant no. 3100A0-101524.


  1. Agee, C. S., and Hill, N. S. 1994. Ergovaline variability in Acremonium-infected tall fescue due to environment and plant genotype. Crop Sci. 34:221–226.Google Scholar
  2. Azuma, H., Toyota, M., Asakawa, Y., Yamaoka, R., Garcia-franco, J. G., Dieringer, G., Thien, L. B., and Kawano, S. 1997. Chemical divergence in floral scents of Magnolia and allied genera (Magnoliaceae). Plant Spec. Biol. 12:69–83.CrossRefGoogle Scholar
  3. Barkman, T. J. 2001. Character coding of secondary chemical variation for use in phylogenetic analyses. Biochem. Syst. Ecol. 29:1–20.PubMedCrossRefGoogle Scholar
  4. Bultman, T. L., and Leuchtmann, A. 2003. A test of host specialization by insect vector as a mechanism for reproductive isolation among entomophilous fungal species. Oikos. 103:681–687.CrossRefGoogle Scholar
  5. Bultman, T. L., White, J. F., Bowdish, T. I., Welch, A. M., and Johnston, J. 1995. Mutualistic transfer of Epichloë-spermatia by Phorbia flies. Mycologia. 87:182–189.CrossRefGoogle Scholar
  6. Bultman, T. L., White, J. F., Bowdish, T. I., and Welch, A. M. 1998. A new kind of mutualism between fungi and insects. Mycol. Res. 102:235–238.CrossRefGoogle Scholar
  7. Bultman, T. L., Welch, A. M., Boning, R. A., and Bowdish, T. I. 2000. The cost of mutualism in a fly–fungus interaction. Oecologia. 124:85–90.CrossRefGoogle Scholar
  8. Craven, K. D., Hsiau, P. T. W., Leuchtmann, A., Hollin, W., and Schardl, C. L. 2001. Multigene phylogeny of Epichloë species, fungal symbionts of grasses. Ann. Missouri Bot. Gard. 88:14–34.CrossRefGoogle Scholar
  9. Dudareva, N., Negre, F., Nagegowda, D. A., and Orlova, I. 2006. Plant volatiles: Recent advances and future perspectives. Crit. Rev. Plant Sci. 25:417–440.CrossRefGoogle Scholar
  10. Easton, H. S., Latch, G. C. M., Tapper, B. A., and Ball, O. J. P. 2002. Ryegrass host genetic control of concentrations of endophyte-derived alkaloids. Crop Sci. 42:51–57.PubMedGoogle Scholar
  11. Faeth, S. H., Bush, L. P., and Sullivan, T. J. 2002. Peramine alkaloid variation in Neotyphodium-infected Arizona fescue: Effects of endophyte and host genotype and environment. J. Chem. Ecol. 28:1511–1526.PubMedCrossRefGoogle Scholar
  12. Faeth, S. H., Gardner, D. R., Hayes, C. J., Jani, A., Wittlinger, S. K., and Jones, T. A. 2006. Temporal and spatial variation in alkaloid levels in Achnatherum robustum, a native grass infected with the endophyte Neotyphodium. J. Chem. Ecol. 32:307–324.PubMedCrossRefGoogle Scholar
  13. Grison-pige, L., Hossaert-mckey, M., Greeff, J. M., and Bessiere, J. M. 2002. Fig volatile compounds—a first comparative study. Phytochemistry. 61:61–71.PubMedCrossRefGoogle Scholar
  14. Guevara, R., Rayner, A. D. M., and Reynolds, S. E. 2000. Orientation of specialist and generalist fungivorous ciid beetles to host and non-host odors. Physiol. Entomol. 25:288–295.CrossRefGoogle Scholar
  15. Hedlund, K., Bengtsson, G., and Rundgren, S. 1995. Fungal odor discrimination in two sympatric species of fungivorous collembolans. Funct. Ecol. 9:869–875.CrossRefGoogle Scholar
  16. Hill, N. S., Parrott, W. A., and Pope, D. D. 1991. Ergopeptine alkaloid production by endophytes in a common tall fescue genotype. Crop Sci. 31:1545–1547.Google Scholar
  17. Huber, F. K., Kaiser, R., Sauter, W., and Schiestl, F. P. 2005. Floral scent emission and pollinator attraction in two species of Gymnadenia (Orchidaceae). Oecologia. 142:564–575.PubMedCrossRefGoogle Scholar
  18. Knudsen, J. T. 2002. Variation in floral scent composition within and between populations of Geonoma macrostachys (Arecaceae) in the western Amazon. Am. J. Bot. 89:1772–1778.CrossRefGoogle Scholar
  19. Knudsen, J. T., Eriksson, R., Gershenzon, J., and Stahl, B. 2006. Diversity and distribution of floral scent. Bot. Rev. 72:1–120.CrossRefGoogle Scholar
  20. Koh, S., and Hik, D. S. 2007. Herbivory mediates grass–endophyte relationships. Ecology. 88:2752–2757.CrossRefGoogle Scholar
  21. Koshino, H., Yoshihara, T., Togiya, S., Terada, S., Tsukada, S., Okuno, M., Noguchi, A., Sakamura, S., Ichihara, A., Shimanuki, T., Tajimi, A., and Sato, T. 1989. Antifungal compounds from stromata of Epichloë typhina on Phleum pratense, pp. 244–251. Proceedings 31. Symposium on the Chemistry of Natural Products. Sapporo, Japan.Google Scholar
  22. Lembicz, M. 1998. Life history of Puccinellia distans (L.) Parl. (Poaceae) in the colonisation of anthropogenic habitats. Phytocoenosis (N.S.). 10:1–32.Google Scholar
  23. Leuchtmann, A. 2003. Taxonomy and diversity of Epichloë endophytes, pp. 169–194, in J. F. White Jr, C. W. Bacon, N. L. Hywel-Jones, and J. W. Spatafora (eds.). Clavicipitalean FungiMarcel Dekker, New York.Google Scholar
  24. Leuchtmann, A. 2007. Botanophila flies on Epichloë host species in Europe and North America: no evidence for co-evolution. Entomol. Exp. Appl. 123:13–23.CrossRefGoogle Scholar
  25. Levin, R. A., Raguso, R. A., and Mcdade, L. A. 2001. Fragrance chemistry and pollinator affinities in Nyctaginaceae. Phytochemistry. 58:429–440.PubMedCrossRefGoogle Scholar
  26. Levin, R. A., Mcdade, L. A., and Raguso, R. A. 2003. The systematic utility of floral and vegetative fragrance in two genera of Nyctaginaceae. Syst. Biol. 52:334–351.PubMedCrossRefGoogle Scholar
  27. Olejniczak, P., and Lembicz, M. 2007. Age-specific response of the grass Puccinellia distans to the presence of a fungal endophyte. Oecologia. 152:485–494.PubMedCrossRefGoogle Scholar
  28. Pellmyr, O., and Thien, L. B. 1986. Insect reproduction and floral fragrances—keys to the evolution of the angiosperms. Taxon. 35:76–85.CrossRefGoogle Scholar
  29. Plepys, D., Ibarra, F., Francke, W., and Lofstedt, C. 2002. Odor-mediated nectar foraging in the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae): Behavioural and electrophysiological responses to floral volatiles. Oikos. 99:75–82.CrossRefGoogle Scholar
  30. Posada, D., and Crandall, K. A. 1998. MODELTEST: Testing the model of DNA substitution. Bioinformatics. 14:817–818.PubMedCrossRefGoogle Scholar
  31. R Development Core Team. 2005. R: A Language and Environment for Statistical Computing. Vienna.Google Scholar
  32. Raguso, R. A., and Roy, B. A. 1998. ‘Floral’ scent production by Puccinia rust fungi that mimic flowers. Mol. Ecol. 7:1127–1136.PubMedCrossRefGoogle Scholar
  33. Raguso, R. A., Levin, R. A., Foose, S. E., Holmberg, M. W., and Mcdade, L. A. 2003. Fragrance chemistry, nocturnal rhythms and pollination “syndromes” in Nicotiana. Phytochemistry. 63:265–284.PubMedCrossRefGoogle Scholar
  34. Rao, S., and Baumann, D. 2004. The interaction of a Botanophila fly species with an exotic Epichloë fungus in a cultivated grass: fungivore or mutualist? Entomol. Exp. Appl. 112:99–105.CrossRefGoogle Scholar
  35. Roylance, J. T., Hill, N. S., and Agee, C. S. 1994. Ergovaline and peramine production in endophyte-infected tall fescue: Independent regulation and effects of plant and endophyte genotype. J. Chem. Ecol. 20:2171–2183.CrossRefGoogle Scholar
  36. Salzmann, C. C., Brown, A., and Schiestl, F. P. 2006. Floral scent emission and pollination syndromes: Evolutionary changes from food to sexual deception. Int. J. Plant Sci. 167:1197–1204.CrossRefGoogle Scholar
  37. Schardl, C. L., Leuchtmann, A., Chung, K. R., Penny, D., and Siegel, M. R. 1997. Coevolution by common descent of fungal symbionts (Epichloë spp.) and grass hosts. Mol. Biol. Evol. 14:133–143.Google Scholar
  38. Schardl, C. L., Leuchtmann, A., and Mcdonald, B. A. 2007. Relationships of Epichloë typhina isolates from different host grasses, pp. 451–455, in A. J. Popay, and E. R. Thom (eds.). Proceedings of the 6th International Symposium on Fungal Endophytes of GrassesNew Zealand Grassland Association (Inc.), Dunedin, New Zealand.Google Scholar
  39. Schiestl, F. P., Steinebrunner, F., Schulz, C., von Reuss, S., Francke, W., Weymuth, C., and Leuchtmann, A. 2006. Evolution of ‘pollinator’-attracting signals in fungi. Biol. Lett. 2:401–404.PubMedCrossRefGoogle Scholar
  40. Schomburg, G. 1990. Gas Chromatography: A Practical Course. Wiley-VCH, Weinheim, New York.Google Scholar
  41. Steinebrunner, F., Twele, R., Francke, W., Leuchtmann, A., and Schiestl, F. P. 2008a. Role of odor compounds in the attraction of gamete vectors in endophytic Epichloë fungi. New Phytol. 178:401.Google Scholar
  42. Steinebrunner, F., Schiestl, F. P., and Leuchtmann, A. 2008b. Ecological role of volatiles produced by Epichloë: differences in antifungal toxicity. FEMS Microbiol. Ecol. 64:307–316.Google Scholar
  43. Swofford, D. L. 2003. PAUP: Phylogenetic Analysis Using Parsimony and Other Methods. Sinauer, Sunderland, Massachusetts.Google Scholar
  44. Tanaka, A., Tapper, B. A., Popay, A., Parker, E. J., and Scott, B. 2005. A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol. Microbiol. 57:1036–1050.PubMedCrossRefGoogle Scholar
  45. Thompson, J. N. 1999. Specific hypotheses on the geographic mosaic of coevolution. Am. Nat. 153:S1–S14.CrossRefGoogle Scholar
  46. Williams, N. H., and Whitten, W. M. 1999. Molecular phylogeny and floral fragrances of male euglossine bee-pollinated orchids: A study of Stanhopea (Orchidaceae). Plant Spec. Biol. 14:129–136.CrossRefGoogle Scholar
  47. Young, C. A., Felitti, S., Shields, K., Spangenberg, G., Johnson, R. D., Bryan, G. T., Saikia, S., and Scott, B. 2006. A complex gene cluster for indole-diterpene biosynthesis in the grass endophyte Neotyphodium lolii. Fungal Genet. Biol. 43:679–693.PubMedCrossRefGoogle Scholar
  48. Zabalgogeazcoa, I., García ciudad, A., Leuchtmann, A., Vázquez de aldana, B. R., and García criado, B. 2008. Effects of choke disease in the grass Brachypodium phoenicoides. Plant Pathol. published online DOI  10.1111/j.1365–3059.2007.01784.x.

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Fabrizio Steinebrunner
    • 1
  • Florian P. Schiestl
    • 2
  • Adrian Leuchtmann
    • 1
  1. 1.Plant Ecological Genetics, Institute of Integrative Biology (IBZ)ETH ZürichZürichSwitzerland
  2. 2.Institute of Systematic BotanyUniversity of ZürichZürichSwitzerland

Personalised recommendations