Journal of Chemical Ecology

, Volume 34, Issue 5, pp 628–635 | Cite as

Belowground Chemical Signaling in Maize: When Simplicity Rhymes with Efficiency

  • Ivan Hiltpold
  • Ted C. J. Turlings


Maize roots respond to feeding by larvae of the beetle Diabrotica virgifera virgifera by releasing (E)-β-caryophyllene. This sesquiterpene, which is not found in healthy maize roots, attracts the entomopathogenic nematode Heterorhabditis megidis. In sharp contrast to the emission of virtually only this single compound by damaged roots, maize leaves emit a blend of numerous volatile organic compounds in response to herbivory. To try to explain this difference between roots and leaves, we studied the diffusion properties of various maize volatiles in sand and soil. The best diffusing compounds were found to be terpenes. Only one other sesquiterpene known for maize, α-copaene, diffused better than (E)-β-caryophyllene, but biosynthesis of the former is far more costly for the plant than the latter. The diffusion of (E)-β-caryophyllene occurs through the gaseous rather than the aqueous phase, as it was found to diffuse faster and further at low moisture level. However, a water layer is needed to prevent complete loss through vertical diffusion, as was found for totally dry sand. Hence, it appears that maize has adapted to emit a readily diffusing and cost-effective belowground signal from its insect-damaged roots.


Belowground tritrophic interactions (E)-β-caryophyllene Roots Diffusion Entomopathogenic nematodes Indirect plant defense Plant–insect interactions 



We thank all the members of the E-vol lab at the University of Neuchâtel for their support, in particular Matthias Held, Russell E. Naisbit, and Sarah Kenyon. We also thank Jean-Michel Gobat for advice on the experimental design, Violaine Jourdie for stimulating discussions and Marie-Eve Wyniger for assistance with the chemical analyses. This project was funded by the Swiss Confederation’s innovation promotion agency (CTI project no. 7487.1 LSPP-LS).


  1. Agrawal, A. A., and Rutter, M. T. 1998. Dynamic anti-herbivore defense in ant-plants: the role of induced responses. Oikos 83:227–236.CrossRefGoogle Scholar
  2. Agrawal, A. A. 1998. Induced responses to herbivory and increased plant performance. Science 29:1201–1202.CrossRefGoogle Scholar
  3. Akiyama, K., Matsuzaki, K., and Hayashi, H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827.PubMedCrossRefGoogle Scholar
  4. Aratchige, N. S., Lesna, I., and Sabelis, M. W. 2004. Below-ground plant parts emit herbivore-induced volatiles: olfactory responses of a predatory mite to tulip bulbs infested by rust mites. Exper. Appl. Acarology 33:21–30.CrossRefGoogle Scholar
  5. Baldwin, I. T., and Preston, C. A. 1999. The eco-physiological complexity of plant responses to insect herbivores. Planta 208:137–145.CrossRefGoogle Scholar
  6. Bernasconi, M. L., Turlings, T. C. J., Ambrosetti, L., Bassetti, P., and Dorn, S. 1998. Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol. Exp. Appl. 87:133–142.CrossRefGoogle Scholar
  7. Bertin, C., Yang, X., and Weston, L. A. 2003. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83.CrossRefGoogle Scholar
  8. Boff, M. I. C., Zoon, F. C., and Smits, P. H. 2001. Orientation of Heterorhabditis megidis to insect hosts and plant roots in a Y-tube sand olfactometer. Entomol. Exp. Appl. 98:329–337.CrossRefGoogle Scholar
  9. Burnell, A. M., and Stock, S. P. 2000. Heterorhabditis, Steinernema and their bacterial symbionts—lethal pathogens of insects. Nematology 2:31–42.CrossRefGoogle Scholar
  10. Butler, L. G. 1995. Chemical communication between the parasitic weed Striga and its crop host—a new dimension in allelochemistry. pp. 158–168, in KInderjit , and FAEinhellig (eds.). Insights into Allelopathy, ACS Symposium SeriesACS Books, Washington, DC.Google Scholar
  11. Calyecac-Cortero, H. G., Cibrian-Tovar, J., Soto-Hernandez, M., and Garcia-Velasco, R. 2007. Isolation and identification of Physalis philadelphica Lam. volatiles. Agrociencia 41:337–346.Google Scholar
  12. Cheng, A. X., Xiang, C. Y., Li, J. X., Yang, C. Q., Hu, W. L., Wang, L. J., Lou, Y. G., and Chen, X. Y. 2007. The rice (E)-beta-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. Phytochemistry 68:1632–1641.PubMedCrossRefGoogle Scholar
  13. D’Alessandro, M., and Turlings, T. C. J. 2005. In Situ modification of herbivore-induced plant odors: a novel approach to study the attractiveness of volatile organic compounds to parasitic wasps. Chem. Senses 30:739–753.PubMedCrossRefGoogle Scholar
  14. Degen, T., Dillmann, C., Marion-Poll, F., and Turlings, T. C. J. 2004. High genetic variability of herbivore-induced volatile emission within a broad range of maize inbred lines. Plant Physiol. 135:1928–1938.PubMedCrossRefGoogle Scholar
  15. De, Moraes, C. M., Lewis, W. J., Pare, P. W., Alborn, H. T., and Tumlinson, J. H. 1998. Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573.CrossRefGoogle Scholar
  16. Dicke, M., and Sabelis, M. W. 1988. How plants obtain predatory mites as bodyguards. Neth. J. Zool. 38:148–165.CrossRefGoogle Scholar
  17. Dicke, M., and Hilker, M. 2003. Induced plant defences: from molecular biology to evolutionary ecology. Basic Appl. Ecol. 4:3–14.CrossRefGoogle Scholar
  18. Dicke, M., Van Poecke, R. M. P., and De Boer, J. G. 2003. Inducible indirect defence of plants: from mechanisms to ecological functions. Basic Appl. Ecol. 4:27–42.CrossRefGoogle Scholar
  19. Erasto, P., Grierson, D. S., and Afolayan, A. J. 2006. Bioactive sesquiterpene lactones from the leaves of Vernonia amygdalina. J. Ethnopharmacol. 106:117–120.PubMedCrossRefGoogle Scholar
  20. Firn, R. D., and Jones, C. G. 2000. The evolution of secondary metabolism - a unifying model. Mol. Microbiol. 37:989–994.PubMedCrossRefGoogle Scholar
  21. Firn, R. D., and Jones, C. G. 2006. Do we need a new hypothesis to explain plant VOC emissions? Trends Plant. Sci. 11:112–113.PubMedCrossRefGoogle Scholar
  22. Forst, S., and Nealson, K. 1996. Molecular biology of the symbiotic pathogenic bacteria Xenorhabdus spp and Photorhabdus spp. Microbiol. Rev. 60:21–43.PubMedGoogle Scholar
  23. Gaugler, R., Lewis, E., and Stuart, R. J. 1997. Ecology in the service of biological control: The case of entomopathogenic nematodes. Oecologia 109:483–489.CrossRefGoogle Scholar
  24. Gorecki, T., and Namiesnik, J. 2002. Passive sampling. Trends Analyt. Chem. 21:276–291.CrossRefGoogle Scholar
  25. Hammack, L. 2001. Single and blended maize volatiles as attractants for diabroticite corn rootworm beetles. J. Chem. Ecol. 27:1373–1390.PubMedCrossRefGoogle Scholar
  26. Helmig, D., Ortega, J., Duhl, T., Tanner, D., Guenther, A., Harley, P., Wiedinmyer, C., Milford, J., and Sakulyanontvittay, T. 2007. Sesquiterpene emissions from pine trees - Identifications, emission rates and flux estimates for the contiguous United States. Environ. Sci. Technol. 41:1545–1553.PubMedCrossRefGoogle Scholar
  27. Jackson, J. J. 1996. Field performance of entomopathogenic nematodes for suppression of western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 89:366–372.Google Scholar
  28. Ji, Z. Q., Wu, W. J., Yang, H., Shi, B. J., and Wang, M. G. 2007. Four novel insecticidal sesquiterpene esters from Celastrus angulatus. Nat. Prod. Res. 21:334–342.CrossRefGoogle Scholar
  29. Journey, A. M., and Ostlie, K. R. 2000. Biological control of the western corn rootworm (Coleoptera: Chrysomelidae) using the entomopathogenic nematodes, Steinernema carpocapsae. Environ. Entomol. 29:822–831.CrossRefGoogle Scholar
  30. Karban, R., Agrawal, A. A., and Mangel, M. 1997. The benefits of induced defenses against herbivores. Ecology 78:1351–1355.CrossRefGoogle Scholar
  31. Karban, R., and Baldwin, I. 1997. Induced Responses to Herbivory. University Press of Chicago, Chicago.Google Scholar
  32. Kessler, A., and Baldwin, I. T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144.PubMedCrossRefGoogle Scholar
  33. Köllner, T., Held, M., Lenk, C., Hiltpold, I., Turlings, T. C. J., Gersgenzon, J., and Degenhardt, J. 2008. A maize (E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20:482–494.Google Scholar
  34. Koziel, J., Jia, M. Y., and Pawliszyn, J. 2000. Air sampling with porous solid-phase microextraction fibers. Anal. Chem. 72:5178–5186.PubMedCrossRefGoogle Scholar
  35. Kuhlmann, U., and van der Burgt, W. A. C. M. 1998. Possibilities for biological control of the western corn rootworm, Diabrotica virgifera virgifera LeConte, in Central Europe. Biocontrol 19:59N–68N.Google Scholar
  36. Levine, E., Oloumi, S. H., and Fisher, J. R. 1992. Discovery of multiyear diapause in Illinois and South Dakota northern corn rootworm (Coleoptera: Chrysomelidae) eggs and incidence of the prolonged diapause trait in Illinois. J. Econ. Entomol. 85:262–267.Google Scholar
  37. Liu, C. H., Mishra, A. K., and Tan, R. X. 2006. Repellent, insecticidal and phytotoxic activities of isoalantolactone from Inula racemosa. Crop Prot. 25:508–511.CrossRefGoogle Scholar
  38. Lowell, P. S., and Eklund, B. 2004. VOC emission fluxes as a function of lateral distance from the source. Environ. Prog. 23:52–58.CrossRefGoogle Scholar
  39. McCoy, C. W., Stuart, R. J., Duncan, L. W., and Nguyen, K. 2002. Field efficacy of two commercial preparations of entomopathogenic nematodes against larvae of Diaprepes abbreviatus (Coleoptera: Curculionidae) in ALFISOL type soil. Fla. Entomol. 85:537–544.CrossRefGoogle Scholar
  40. McGechan, M. B., and Lewis, D. R. 2002. Transport of particulate and colloid-sorbed contaminants through soil, part 1: General principles. Biosystems Engineering 83:255–273.CrossRefGoogle Scholar
  41. Miller, N., Estoup, A., Toepfer, S., Bourguet, D., Lapchin, L., Derridj, S., Kim, K. S., Reynaud, P., Furlan, L., and Guillemaud, T. 2005. Multiple transatlantic introductions of the western corn rootworm. Science 310:992–992.PubMedCrossRefGoogle Scholar
  42. Neveu, N., Grandgirard, J., Nenon, J. P., and Cortesero, A. M. 2002. Systemic release of herbivore-induced plant volatiles by turnips infested by concealed root-feeding larvae Delia radicum L. J. Chem. Ecol. 28:1717–1732.PubMedCrossRefGoogle Scholar
  43. O’Neil, M. E., Difonzo, C. D., and Landis, D. A. 2002. Western corn rootworm (Coleptera: Chrysomelidae) feeding on corn and soybean leaves affected by corn phenology. J. Econ. Entomol. 31:285–292.Google Scholar
  44. Owen, S. M., and Peñuelas, J. 2005. Opportunistic emissions of volatile isoprenoids. Trends Plant Sci. 10:420–426.PubMedCrossRefGoogle Scholar
  45. Owen, S. M., and Penuelas, J. 2006. Response to Firn and Jones: Volatile isoprenoids, a special case of secondary metabolism. Trends Plant Sci 11:113–114.CrossRefGoogle Scholar
  46. Peñuelas, J., and Llusià, J. 2004. Plant VOC emissions: making use of the unavoidable. Trends Ecol. Evol. 19:402–404.PubMedCrossRefGoogle Scholar
  47. Rasmann, S., Köllner, T. G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J., and Turlings, T. C. J. 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737.PubMedCrossRefGoogle Scholar
  48. Rasmann, S., and Turlings, T. C. J. 2008. First insights into specificity of belowground tritrophic interactions. Oikos 117:362–369.CrossRefGoogle Scholar
  49. Rodriguez-Saona, C., Crafts-Brander, S. J., Pare, P. W., and Henneberry, T. J. 2001. Exogenous methyl jasmonate induces volatile emissions in cotton plants. J. Chem. Ecol. 27:679–695.PubMedCrossRefGoogle Scholar
  50. Ruiz, J., Bolbao, R., and Murillo, M. B. 1998. Adsorption of different VOC onto soil minerals from gas phase: Influence of mineral, type of VOC, and air humidity. Environ. Sci. Technol. 32:1079–1084.CrossRefGoogle Scholar
  51. Sabulal, B., Dan, M., Anil, J. J., Kurup, R., Pradeep, N. S., Valsamma, R. K., and George, V. 2006. Caryophyllene-rich rhizome oil of Zingiber nimmonii from South India: Chemical characterization and antimicrobial activity. Phytochemistry 67:2469–2473.PubMedCrossRefGoogle Scholar
  52. Schoonhoven, L. M., Jermy, T., and Van, Loon, J. J. A. 1998. Insect-Plant Biology: From Physiology to Evolution. Chapman and Hall, New York.Google Scholar
  53. Thaler, J. S. 1999. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399:686–688.CrossRefGoogle Scholar
  54. Tholl, D., Cchen, F., Petri, J., Gershenzon, J., and Pichersky, E. 2005. Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J. 42:757–771.PubMedCrossRefGoogle Scholar
  55. Toepfer, S., and Kuhlmann, U. 2004. Survey for natural enemies of the invasive alien chrysomelid, Diabrotica virgifera virgifera, in Central Europe. Biocontrol 49:385–395.CrossRefGoogle Scholar
  56. Tollefson, J. J. 1998. A pest insect adapts to the cultural control of crop rotation; Brighton Crop Protection Conference. Pests and Diseases 3:1029–1033.Google Scholar
  57. Tòth, M., Vuts, J., Szarukán, I., Juhász, I., and Manajlovics, F. 2007. Preliminary study of female-targeted semiochemical baits for the western corn rootworm in Europe. J. Appl. Entomol. 131:416–419.CrossRefGoogle Scholar
  58. Turlings, T. C. J., Loughrin, J. H., McCall, P. J., Röse, U. S. R., Lewis, W. J., and Tumlinson, J. H. 1995. How caterpillar-damaged plants protect themselves by attracting parsitic wasps. Proc. Natl. Acad. Sci. USA 92:4169–4174.PubMedCrossRefGoogle Scholar
  59. Turlings, T. C. J., and Ton, J. 2006. Exploiting scents of distress: the prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Curr. Opin.Plant Biol. 9:421–427.PubMedCrossRefGoogle Scholar
  60. Turlings, T. C. J., and Wacker, F. 2004. Recruitment of predators and parasitoids by herbivore injured-plants.. pp. 21–75, in R. T.Cardé, and J. G.Millar (eds.). Advances in Insect Chemical EcologyCambridge University Press, Cambridge.Google Scholar
  61. Van Tol, R. W. H. M., Van Der Sommen, A. T. C., Boff, M. I. C., Van Bezooijen, J., Sabelis, M. W., and Smits, P. H. 2001. Plants protect their roots by alerting the enemies of grubs. Ecology Lett. 4:292–294.CrossRefGoogle Scholar
  62. Vas, G., and Vekey, K. 2004. Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. J. Mass Spectrom. 39:233–254.PubMedCrossRefGoogle Scholar
  63. Vidal, S., Kuhlmann, U., and Edwards, R. 2005. Western Corn Rootworm: Ecology and Management. p. 324. CABI, Wallingford, United Kingdom.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.University of Neuchâtel, Institute of Biology, FARCENeuchâtelSwitzerland

Personalised recommendations