Journal of Chemical Ecology

, Volume 34, Issue 2, pp 215–219 | Cite as

E-2-Ethylhexenal, E-2-Ethyl-2-Hexenol, Mellein, and 4-Hydroxymellein in Camponotus Species from Brunei

  • Heather L. Voegtle
  • Tappey H. Jones
  • Diane W. Davidson
  • Roy R. Snelling


E-2-ethyl-2-hexen-1-ol (1), mellein (4), and 4-hydroxymellein (5) were identified as the major volatile compounds in the head and/or thorax of Camponotus quadrisectus. Neither 1 nor 5 have been previously detected in insects. Also identified were small amounts of m-cresol (2) and 6-methyl salicylic acid (3). E-2-ethylhexenal (6) and small amounts of 3 were identified in heads of Camponotus irritibilis from Kuala Belalong, Brunei. Compounds 24 occur in other Bornean camponotines with hypertrophied mandibular glands, and 4 is widespread in the tribe. The possibility of semiochemical parsimony (multiple functions) for these mandibular gland compounds is reviewed in the context of existing data on mandibular gland products of other camponotines, reported biological activities of the compounds, and secondary loss of metapleural glands in this ant group.


Ants Borneo Camponotus Mandibular glands E-2-ethyl-2-hexenal E-2-ethyl-2-hexenol Mellein 4-hydroxymellein 



HLV and THJ gratefully acknowledge the support of the Camille and Henry Dreyfus Foundation and thank Dr. Tom Spande (Laboratory of Bioorganic Chemistry, NIH/NIDDK) for the GC/ FTIR spectra and Dr. Judith Cain for her NMR assistance. We are grateful to Dr. J. A. Findlay for copies of the GC-MS and 1H NMR spectra for 4-hydroxymellein for direct comparison with our data for compound 5. DWD thanks the National Geographic Society and the University of Utah Research Committee for support of field studies.


  1. Asha, K. N., Chowdhury, R., Hasan, C. M., and ashid, M. A. 2004. Steroids and polyketides from Uvaria hamiltonii stem bark. Acta Pharm. 54:57–69.PubMedGoogle Scholar
  2. Avantaggiato, G., Solfrizzo, M., Tosi, L., Zazzerini, A., Fanizzi, F. P., and Visconti, A. 1999. Isolation and characterization of phytotoxic compounds produced by Phomopsis helianthi. Nat. Toxins 7:119–127.PubMedCrossRefGoogle Scholar
  3. Bellas, T., and Hölldobler, B. 1985. Constituents of mandibular and Dufour’'s glands of an Australian Polyrhachis weaver ant. J. Chem. Ecol. 11:525–538.CrossRefGoogle Scholar
  4. Berestetskii, O. A., Mamedov, T. A., and Borovkov, A. V. 1979. Phytotoxic metabolites of the soil fungus Aspergillus ochraceus Wilgelm. Doklady Vsesoyuznoi Akademi Sel’skokhozyaistvennykh Nauk imeni V. I. Lenina 12:15–17.Google Scholar
  5. Bestmann, H. J., Kern, F., Schafer, D., and Witschel, M. C. 1992. 3,4-Dihydroisocumarine, eine neue Klasse von Spurpheromonen bei Ameisen. Angew. Chem. 104:757–758.CrossRefGoogle Scholar
  6. Bestmann, H. J., Übler, E., and Hölldobler, B. 1997. First biosynthetic studies on trail pheromones in ants. Angew. Chem. Int. Ed. Engl. 36:395–397.CrossRefGoogle Scholar
  7. Bestmann, H. J., Liepold, B., Kress, A., and Hofmann, A. 1999. (2S, 4R, 5S)-2,4-Dimethyl-5-hexanolide: ants of different species Camponotus can distinguish the absolute configuration of their trail pheromone. Chem. Eur. J. 5:2984–2989.CrossRefGoogle Scholar
  8. Blum, M. S. 1981. Chemical Defenses of Arthropods. Academic Press, New York.Google Scholar
  9. Blum, M. S., Morel, L., and Fales, H. M. 1987. Chemistry of the mandibular gland secretion of the ant Camponotus vagus. Comp. Biochem. Physiol. 86B:251–252.Google Scholar
  10. Blum, M. S., Snelling, R. R., Duffield, R. M., Hermann, H. R. Jr., and Lloyd, A. 1988. Mandibular gland chemistry of Camponotus (Myrmothrix) abdominalis: Chemistry and chemosystematic implications (Hymenoptera: Formicidae), pp. 481–489, in J. C. Trager (ed.). Advances in MyrmecologyLeiden, New York City, New York.Google Scholar
  11. Blum, M. S. 1996. Semiochemical parsimony in the arthropoda. Annu. Rev. Entomol. 41:353–374.PubMedCrossRefGoogle Scholar
  12. Bradshaw, J. W. S., Baker, R., and Howse, P. E. 1979. Multicomponent alarm pheromones in the mandibular glands of major workers of the African weaver ant, Oecophylla longinoda. Physiol. Entomol. 4:15–25.Google Scholar
  13. Brand, J. M., Duffield, R. M., MacConnell, J. G., Blum, M. S., and Fales, H. M. 1973a. Caste-specific compounds in male carpenter ants. Science 179:388–389.PubMedCrossRefGoogle Scholar
  14. Brand, J. M., Fales, H. M., Sokoloski, F. A., MacConnell, J. G., Blum, M. S., and Duffield, R. M. 1973b. Identification of mellein in the mandibular gland secretions of carpenter ants. Life Sci. 13:201–211.PubMedCrossRefGoogle Scholar
  15. Brown, W. V., and Moore, B. P. 1979. Volatile secretory products of an Australian formicine ant of the genus Calomyrmex (Hymenoptera: formicidae). Insect Biochem. 9:451–460.CrossRefGoogle Scholar
  16. Casperson, G., Banasiak, L., Lyr, H., and Sunkel, M. 1986. Wirkung von 2-Ethyl-2-en-1-al und verwandter Verbindungen auf Wachstum und Ultrastruktur von Pilzen. J. Basic Microbiol. 26:259–269.PubMedCrossRefGoogle Scholar
  17. Dimitriadis, C., Gill, M., and Harte, M. F. 1997. The first stereospecific approach to both enantiomers of mellein. Tetrahedron 8:2153–2158.CrossRefGoogle Scholar
  18. Duffield, R. M., and Blum, M. S. 1975. Identification, role, and systematic significance of 3-octanone in the carpenter ant, Camponotus shaefferi. Whr. Comp. Biochem. Physiol. 51B:281–282.CrossRefGoogle Scholar
  19. Findlay, J. A., Buthelezi, S., Lavoie, R., and Peña-odriquez, L. 1995. Bioactive isocoumarins and related metabolites from conifer endophytes. J. Nat. Prod. 58:1759–1766.PubMedCrossRefGoogle Scholar
  20. Häusermann, M. 1951. Zur disproportionierung aliphatischer aldehyde. Helv. Chim. Acta. 34:1482–1491.CrossRefGoogle Scholar
  21. Hölldobler, B., and Engel-Siegel, H. 1984. On the metapleural glands of ants. Psyche 91:201–224.CrossRefGoogle Scholar
  22. Hölldobler, B., and Wilson, E. O. 1990. The Ants. Belknap Press, Cambridge, MA.Google Scholar
  23. Iseki, Y., Kudo, M., Mori, A., and Inoue, S. 1992. Asymmetric epoxidation of allylic alcohols catalyzed by titanium alkoxide-peptide and -.alpha.-amino acid complexes anchored by phenolic Schiff base. J. Org. Chem. 57:6329–6331.CrossRefGoogle Scholar
  24. Jaffe, K., and Sánchez, C. 1984. Nestmate recognition and territorial behavior in the ants Camponotus rufipes. Insect. Soc. 31:302–315.CrossRefGoogle Scholar
  25. Jones, T. H., Clark, D. A., Edwards, A. A., Davidson, D. W., Spande, T. F., and Snelling, R. R. 2004. The chemistry of exploding ants, Camponotus spp. (cylindricus complex). J. Chem. Ecol. 30:1479–1492.PubMedCrossRefGoogle Scholar
  26. Kansoh, A. L., and El-Gindi, O. D. 2004. Studies on the bioactive compounds of Streptomyces sp. Egypt. J. Biomed. Sci. 15:386–401.Google Scholar
  27. Kohl, E., Hölldobler, B., and Bestmann, H. J. 2003. Trail pheromones and Dufour gland contents in three Camponotus species (C. castaneus, C. balzani, C. sericeiventris: Formicidae, Hymenoptera). Chemoecology 13:113–122.CrossRefGoogle Scholar
  28. Kongsaeree, P., Prabpai, S., Sriubolmas, N., Vongvein, C., and Wiyakrutta, S. 2003. Antimalarial dihydroisocoumarins produced by Geotrichum sp., an endophytic fungus of Crassocephalum crepidoides. J. Nat. Prod. 66:709–711.PubMedCrossRefGoogle Scholar
  29. Lyr, H., and Banasiak, L. 1983. Alkenals, volatile defense substances in plants, their properties and activities. Acta Phytopath. Acad. Sci. Hungaricae. 18:3–12.Google Scholar
  30. NIST/EPA/NIH 1999. Mass Spectral Library on CD-ROM, Version 1.7. U.S. Secretary of Commerce, Gaithersburg, MD.Google Scholar
  31. Saito, T., Hayamizu, K., Yanagisawa, M., and Yamamoto, O. 2007. Spectral data base for organic compounds. <>.Google Scholar
  32. Sasaki, M., Kaneko, Y., Oshita, K., Takamatsu, H., Asao, Y., and Tokotsuka, T. 1970. Studies on the compounds produced by molds. Part VII. Isolation of isocoumarin compounds. Agr. Biol. Chem. 34:1296–1300.Google Scholar
  33. Seidel, J. L. 1988. The monoterpenes of Gutierrezia sarothrae; chemical interactions between ants and plants in neotropical ant gardens. Ph.D. dissertation. University of Utah, Salt Lake City.Google Scholar
  34. Seidel, J. L., Epstein, W. W., and Davidson, D. W. 1990. Neotropical ant gardens I. Chemical consituents. J. Chem. Ecol. 16:1791–1816.CrossRefGoogle Scholar
  35. Torres, J. A., Snelling, R. R., Blum, M. S., Flourney, R. C., Jones, T. H., and Duffield, R. M. 2001. Mandibular gland chemistry of the four caribbean species of Camponotus (Hymenoptera: Formicidae). Biochem. Sys. Ecol. 29:673–680.CrossRefGoogle Scholar
  36. Übler, E., Kern, F., Bestmann, H. J., Holldobler, B., and Attygalle, A. B. 1995. Trail pheromone of two Formicine ants, Camponotus silvicola and C. rufipes (Hymenoptera: Formicidae). Naturwissenschaften 82:523–525.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Heather L. Voegtle
    • 1
  • Tappey H. Jones
    • 1
  • Diane W. Davidson
    • 2
  • Roy R. Snelling
    • 3
  1. 1.Department of ChemistryVirginia Military InstituteLexingtonUSA
  2. 2.Department of BiologyUniversity of UtahSalt Lake CityUSA
  3. 3.Los Angeles County Museum of Natural HistoryLos AngelesUSA

Personalised recommendations