Advertisement

Journal of Chemical Ecology

, Volume 34, Issue 2, pp 205–214 | Cite as

Experimental Evidence for Three Pheromone Races of the Scarab Beetle Phyllophaga anxia (LeConte)

  • Paul S. Robbins
  • Daniel B. Cash
  • Charles E. LinnJr
  • Wendell L. Roelofs
Article

Abstract

This study offers experimental evidence for the existence of three pheromone races of the northern genitalic form of Phyllophaga anxia: one race in which females produce and males respond mainly to l-valine methyl ester, a second producing and responding to l-isoleucine methyl ester, and a third producing and responding to an intermediate range of blends of the two compounds. At Franklinville, NY, pheromone gland contents of females were analyzed using coupled gas chromatography–electroantennogram detection. Two types of females were found, one that produced greater than 99% l-valine methyl ester and another that produced greater than 99% l-isoleucine methyl ester. Capture–mark–release–recapture field tests with males at Franklinville established that most males were recaptured in traps baited with the same blends with which they were originally captured. The populations characterized at Franklinville, NY, have also been found at numerous locations from eastern Canada and the northeast and north central USA, sometimes in allopatry and sometimes in sympatry. At a site in Carver, MA, P. anxia males responded to blends of the methyl esters of l-valine and l-isoleucine, and Carver females produced blends similar to those to which the males responded. Populations responding to blends have been identified only from southeastern Massachusetts and Rhode Island. At a field site near Waterloo, NY, the addition of small proportions of l-isoleucine methyl ester to lures containing l-valine methyl ester did not affect trap captures, but higher proportions of l-isoleucine methyl ester were inhibitory, decreasing trap captures.

Keywords

l-Isoleucine methyl ester l-Valine methyl ester Sex pheromone Scarabaeidae Melolonthinae Pheromone races 

Notes

Acknowledgments

P.S.R. thanks Satoshi Nojima and Bruce Morris for generously sharing their knowledge of GC-EAD and chemistry techniques. We thank Donna Boyce of Communication Services at Cornell University in Geneva, NY, for assistance with illustrations. P.S.R. also thanks Michael G. Villani, friend, mentor, and committee chair, who passed away on May 15, 2001.

References

  1. Arn, H., Esbjerg, P., Bues, R., Tóth, M., Szöcs, G., Guerin, P., and auscher, S. 1983. Field attraction of Agrotis segetum males in four European countries to mixtures containing three homologous acetates. J. Chem. Ecol. 9:267–276.CrossRefGoogle Scholar
  2. Baltensweiler, V. W., and Priesner, E. 1988. A study of pheromone polymorphism in Zeiraphera diniana Gn. (Lep., Tortricidae). 3. Specificity of attraction to synthetic pheromone sources by different male response types from two host races. J. Appl. Entomol. 106:217–231.CrossRefGoogle Scholar
  3. Baltensweiler, V. W., Priesner, E., Arn, H., and Delucchi, V. 1978. Evidence for different sexual attractants used by the larch form and cembran pine form of the gray larch bud moth Zeiraphera diniana. Mitt. Schweiz. Entomol. Ges. 51:133–142.Google Scholar
  4. Chapman, R. F. 1982. The Insects: Structure and Function. Harvard University Press, Cambridge, MA.Google Scholar
  5. Dittl, T. G., and Kummer, L. D. 1997. Major Cranberry Insect Pests of Wisconsin. www.wiscran.org/cranbugs.pdf.
  6. Evans, A. V., and Smith, A. B. T. 2007. An Electronic Checklist of the New World Chafers (Coleoptera: Scarabaeidae: Melolonthinae), Version 2. Ottawa, Canada. 349 pp. http://www.museum.unl.edu/research/entomology/nwmelos.htm.
  7. Franklin, H. J. 1950. Cranberry Insects of Massachusetts. Bulletin 445. Parts II–VII. Massachusetts Agricultural Experimental Station, Amherst, MA.Google Scholar
  8. Glover, T. J., Knodel, J. J., Robbins, P. S., Eckenrode, C. J., and Roelofs, W. L. 1991. Gene flow among three races of European corn borers (Lepidoptera: Pyralidae) in New York state. Env. Entomol. 20:1356–1362.Google Scholar
  9. Haynes, K. F., and Baker, T. C. 1988. Potential for evolution of resistance to pheromones. Worldwide and local variation in chemical communication system of pink bollworm moth, Pectinophora gossypiella. J. Chem. Ecol. 14:1547–1560.CrossRefGoogle Scholar
  10. Haynes, K. F., and Hunt, R. E. 1990. Interpopulational variation in emitted pheromone blend of cabbage looper moth, Trichoplusia ni. J. Chem. Ecol. 16:509–519.CrossRefGoogle Scholar
  11. Henzell, R. F., and Lowe, M. D. 1970. Sex attractant of the grass grub beetle. Science 168:1005–1006.PubMedCrossRefGoogle Scholar
  12. Hoyt, C. P., and Osborne, G. O. 1971. Production of an insect sex attractant by symbiotic bacteria. Nature 230:472–473.PubMedCrossRefGoogle Scholar
  13. Lanier, G. N., Birch, M. C., Schmitz, R. F., and Furniss, M. M. 1972. Pheromones of Ips pini (Coleoptera: Scolytidae): variation in response among three populations. Can. Entomol. 104:1917–1923.CrossRefGoogle Scholar
  14. Lanier, G. N., Classon, A., Stewart, T., Piston, J. J., and Silverstein, R. M. 1980. Ips pini: The basis for interpopulational differences in pheromone biology. J. Chem. Ecol. 6:677–687.CrossRefGoogle Scholar
  15. Leal, W. S., Sawada, M., Matsuyama, S., Kuwahara, Y., and Hasegawa, M. 1993. Unusual periodicity of sex pheromone production in the large black chafer Holotrichia parallela. J. Chem. Ecol. 19:1381–1391.CrossRefGoogle Scholar
  16. Linn, C. E., and Roelofs, W. L. 1995. Pheromone communication in moths and its role in the speciation process, pp. 263–300, in D. M. Lambert, and H. G. Spencer (eds.). Speciation and the Recognition Concept The Johns Hopkins University Press, Baltimore, MD.Google Scholar
  17. Löfstedt, C. 1990. Population variation and genetic control of pheromone communication systems in moths. Entomol. Exp. Appl. 54:199–218.CrossRefGoogle Scholar
  18. Löfstedt, C., Löfqvist, J., Lanne, B. S., Van Der Pers, J. N. C., and Hansson, B. S. 1986. Pheromone dialects in European turnip moths Agrotis segetum. Oikos 46:250–257.CrossRefGoogle Scholar
  19. Luginbill, P., and Painter, H. R. 1953. May Beetles of the United States and Canada. US Department of Agriculture Technical Bulletin no. 1040.Google Scholar
  20. Miller, D. R., Borden, J. H., and Slessor, K. N. 1989. Inter- and intrapopulation variation of the pheromone, ipsdienol produced by male pine engravers, Ips pini (Say) (Coleoptera: Scolytidae). J. Chem. Ecol. 15:233–248.CrossRefGoogle Scholar
  21. Nojima, S., Linn, C. E. , Morris, B. D., Zhang, A., and Roelofs, W. L. 2003a. Identification of host fruit volatiles from hawthorn (Crataegus spp.) attractive to hawthorn-origin Rhagoletis pomonella flies. J. Chem. Ecol. 29:319–334.Google Scholar
  22. Nojima, S., Robbins, P. S., Salsbury, G. A., Morris, B. D., Roelofs, W. L., and Villani, M. G. 2003b. L-Leucine methyl ester: The female-produced sex pheromone of the scarab beetle Phyllophaga lanceolata. J. Chem. Ecol. 29:2439–2446.PubMedCrossRefGoogle Scholar
  23. Phelan, P. L. 1997. Evolution of mate-signaling in moths: phylogenetic considerations and predictions from the asymmetric tracking hypothesis, pp. 240–256, in J. C. Choe, and B. J. Crespi (eds.). Mating Systems in Insects and ArachnidsCambridge University Press, Cambridge, MA.Google Scholar
  24. Robbins, P. S., Crocker, R. L., Nojima, S., Morris, B. D., Roelofs, W. L., and Villani, M. G. 2003. Methyl 2-(methylthio)benzoate: the unique sulfur-containing sex pheromone of Phyllophaga crinita. Naturwissenschaften 90:517–520.PubMedCrossRefGoogle Scholar
  25. Robbins, P. S., Alm, S. R., Armstrong, C. D., Averill, A. L., Baker, T. C., Bauernfiend, R. J., Baxendale, F. P., Braman, S. K., Brandenburg, R. L., Cash, D. B., Couch, G. J., Cowles, R. S., Crocker, R. L., Delamar, Z. D., Dittl, T. G., Fitzpatrick, S. M., Flanders, K. L., Forgatsch, T., Gibb, T. J., Gill, B. D., Gilrein, D. O., Gorsuch, C. S., Hammond, A. M., Hastings, P. D., Held, D. W., Heller, P. R., Hiskes, R. T., Holliman, J. L., Hudson, W. G., Klein, M. G., Krischik, V. L., Lee, D. J., Linn, C. E., Luce, N. J., Mackenzie, K. E., Mannion, C. M., Polavarapu, S., Potter, D. A., Roelofs, W. L., oyals, B. M., Salsbury, G. A., Schiff, N. M., Shetlar, D. J., Skinner, M., Sparks, B. L., Sutschek, J. A., Sutschek, T. P., Swier, S. R., Sylvia, M. M., Vickers, N. J., Vittum, P. J., Weidman, R. B., Weber, D. C., Williamson, R. C., and Villani, M. G. 2006. Trapping Phyllophaga spp. (Coleoptera: Scarabaeidae: Melolonthinae) with sex attractants in the United States and Canada. J. Insect Sci. 6:124.Google Scholar
  26. Roelofs, W. L., Du, J. W., Tang, X. H., Robbins, P. S., and Eckenrode, C. J. 1985. Three European corn borer populations in New York based on sex pheromones and voltinism. J. Chem. Ecol. 11:829–836.CrossRefGoogle Scholar
  27. Roelofs, W., Glover, T., Tang, X.-H., Sreng, I., Robbins, P., Eckenrode, C., Löfstedt, C., Hansson, B., and Bengtsson, B. O. 1987. Sex pheromone production and perception in European corn borer moths is determined by both autosomal and sex-linked genes. Proc. Natl. Acad. Sci. USA 84:7585–7589.PubMedCrossRefGoogle Scholar
  28. Tóth, M., Löfstedt, C., Blair, B. W., Cabello, T., Farag, A. I., Hansson, B. S., Kovalev, B. B., Maini, S., Nesterov, E. A., Pajor, I., Sazonov, A. P., Shamshev, I. V., Subchev, M., and Szöcs, G. 1992. Attraction of male turnip moths Agrotis segetum (Lepidoptera: Noctuidae) to sex pheromone components and their mixtures at 11 sites in Europe, Asia, and Africa. J. Chem. Ecol. 18:1337–1347.CrossRefGoogle Scholar
  29. Woodruff, R. E., and Beck, B. E. 1989. Arthropods of Florida and Neighboring Land Area: the Scarab Beetles of Florida (Coleoptera: Scarabaeidae). Part II. The May or June Beetles (genus Phyllophaga), vol. 13. Florida Department of Agriculture and Consumer Services, Tallahassee, FL(226 pp).Google Scholar
  30. Wu, W., Cottrell, C. B., Hansson, B. S., and Löfstedt, C. 1999. Comparative study of pheromone production and response in Swedish and Zimbabwean populations of turnip moth, Agrotis segetum. J. Chem. Ecol. 25:177–196.CrossRefGoogle Scholar
  31. Zhang, A., Robbins, P. S., Leal, W. S., Linn, C. E. , Villani, M. G., and Roelofs, W. L. 1997. Essential amino acid methyl esters: major sex pheromone components of the cranberry white grub, Phyllophaga anxia (Coleoptera: Scarabaeidae). J. Chem. Ecol. 23:231–245.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Paul S. Robbins
    • 1
  • Daniel B. Cash
    • 2
  • Charles E. LinnJr
    • 1
  • Wendell L. Roelofs
    • 1
  1. 1.Department of Entomology, New York State Agricultural Experiment StationCornell UniversityGenevaUSA
  2. 2.AngelicaUSA

Personalised recommendations