Journal of Chemical Ecology

, Volume 34, Issue 1, pp 44–56 | Cite as

Sex-Specific Tyrian Purple Genesis: Precursor and Pigment Distribution in the Reproductive System of the Marine Mollusc, Dicathais orbita



Exploitation of Tyrian purple from muricid molluscs, since antiquity, has prompted much interest in its chemical composition. Nevertheless, there remains a paucity of information on the biosynthetic routes leading to observed sexual differences in pigmentation. A liquid chromatography-mass spectrometry (LQ-MS) method was developed to simultaneously quantify dye pigments and precursors in male and female Dicathais orbita. The prochromogen, tyrindoxyl sulfate, was detected for the first time, by using this method in hypobranchial gland extracts of both sexes. Intermediates tyrindoxyl, tyrindoleninone, and tyriverdin were detected in female hypobranchial glands, along with 6,6′-dibromoindigo, while males contained 6-bromoisatin and 6,6′-dibromoindirubin. Multivariate analysis revealed statistically significant differences in the dye composition of male and female hypobranchial glands (ANOSIM, P = 0.002), thus providing evidence for sex-specific genesis of Tyrian purple in the Muricidae. Dye precursors were also present in male and female gonoduct extracts, establishing a mechanism for the incorporation of bioactive intermediates into muricid egg masses. These findings provide a model for investigating sex-specific chemical divergences in marine invertebrates and support the involvement of Tyrian purple genesis in muricid reproduction.


Brominated indoles Hypobranchial gland Muricidae Reproduction Sexual dimorphism 



We thank Dr. D. Jardine (Flinders Advanced Analytical Laboratory) for assistance with the LC-MS analyses. We are also grateful to Ms. A. Bogdanovic for preparation of male extracts, Dr. C. McIver, Assoc. Prof. J. Mitchell and Dr. C. Lenehan for providing useful feedback on the draft manuscript, and Inge Boesken Kanold for personal observations and images. We appreciate the provision of a Flinders University Postgraduate Scholarship to C. Westley. This research was supported by a Philanthropic research grant to K. Benkendorff.


  1. Alvares, M., and Salas, M. 1991. Marine, nitrogen-containing heterocyclic natural products- structures and syntheses of compounds containing indole units. Heterocycles 32:1391–1452.Google Scholar
  2. Andreotti, A., Bonaduce, I., Colombini, M., and ibechini, E. 2004. Characterization of natural indigo and Tyrian purple by mass spectrometric techniques. Rapid Commun. Mass. Spectrom. 18:1213–1220.PubMedCrossRefGoogle Scholar
  3. Bailey, K. 1929. The Elder Pliny’s Chapters on Chemical Subjects, Part 1. Edward Arnold, London.Google Scholar
  4. Baker, J. 1974. Tyrian purple. Ancient dye, a modern problem. Endeavour 33:11–17.CrossRefGoogle Scholar
  5. Baker, J., and Duke, C. 1973. Isolation from the hypobranchial glands of marine molluscs of 6-bromo-2,2-dimethylthioindolin-3-one and 6-bromo-2-methylthioindoleninone as alternative precursors to Tyrian purple. Aust. J. Chem. 26:2153–2157.CrossRefGoogle Scholar
  6. Baker, J., and Duke, C. 1976. Isolation of choline ester salts of tyrindoxyl sulphate from the marine molluscs Dicathais orbita and Mancinella keineri. Tetrahedron Lett. 15:1233–1234.CrossRefGoogle Scholar
  7. Baker, J., and Sutherland, M. 1968. Pigments of marine animals VIII. Precursors of 6,6′-dibromoindigotin (Tyrian purple) from the mollusc Dicathais orbita (Gmelin). Tetrahedron Lett. 1:43–46.CrossRefGoogle Scholar
  8. Bandaranayake, W. 2006. The nature of pigments in marine invertebrates. Nat. Prod. Rep. 23:223–255.PubMedCrossRefGoogle Scholar
  9. Benkendorff, K., Bremner, J., and Davis, A. 2000. Tyrian purple precursors in the egg masses of the Australian muricid, Dicathais orbita: A possible defensive role. J. Chem. Ecol. 26:1037–1050.CrossRefGoogle Scholar
  10. Benkendorff, K., Bremner, J., and Davis, A. 2001. Indole derivatives from the egg masses of muricid molluscs. Molecules 6:70–78.CrossRefGoogle Scholar
  11. Benkendorff, K., Westley, C., and Gallardo, C. 2004. Observations of purple pigments in the egg capsules, hypobranchial and reproductive glands from seven species of the Muricidae (Gastropoda: Mollusca). Invertebr. Reprod. Dev. 46:93–102.Google Scholar
  12. Christophersen, C. 1983. Marine indoles, pp. 259–285, in P. J. Scheuer (ed.). Marine Natural Products, Chemical and Biological PerspectivesAcademic, New York, U.S.A.Google Scholar
  13. Christophersen, C., Watjen, F., Buchardt, O., and Anthoni, U. 1978. A revised structure of tyriverdin: The precursor to Tyrian purple. Tetrahedron. Lett. 34:2779–2781.Google Scholar
  14. Clark, R., and Cooksey, C. 1997. Bromoindirubins: the synthesis and properties of minor components of Tyrian purple and the composition of the colourant from Nucella lapillus. J. Soc. Dyers Colour 113:316–321.CrossRefGoogle Scholar
  15. Clarke, K., and Gorley, R. 2001. PRIMER v5: User Manual/Tutorial. PRIMER-E Ltd, Plymouth, U.K.Google Scholar
  16. Cole, W. 1685. Letter to the philosophical society of oxford containing observations on the purple fish. Phil. Trans. R. Soc. 15:1278.CrossRefGoogle Scholar
  17. Cooksey, C. 2001a. Tyrian Purple: 6,6′-dibromoindigo and related compounds. Molecules 6:736–769.Google Scholar
  18. Cooksey, C. 2001b. The synthesis and properties of 6-bromoindigo: Indigo blue or Tyrian purple? The effect of physical state on the colours of indigo and bromoindigos. Dyes in History and Archaeology 16–17:97–104.Google Scholar
  19. Cooksey, C. 2006. Marine indirubins, Indirubin, the Red Shade of Indigo. pp. 23–30, in L. Meijer, N. Guyard, A. L. Skaltsounis, and G. Eisenbrand (eds.). Life in Progress Editions, Roscoff, France.Google Scholar
  20. Cooksey, C., and Withnall, R. 2001. Chemical studies on Nucella lapillus. Dyes in History and Archaeology 16–17:91–96.Google Scholar
  21. Dubois, R. 1909. Recherches sur la pourpre et sur quelques autres pigments animaux. Arch. Zool. Expt. 42:471–590.Google Scholar
  22. Elsner, D., and Spanier, E. 1985. The dyeing with Murex extracts, an unusual dyeing method of wool to the biblical sky blue. Proceedings of the 7th International Wool and Textile Research Conference, Tokyo, Japan. 5:118–130.Google Scholar
  23. Fleury, B., Coll, J., and Sammarco, P. 2006. Complementary (secondary) metabolites in a soft coral: Sex-specific variability, inter-clonal variability and competition. Mar. Ecol. 27:204–218.CrossRefGoogle Scholar
  24. Fretter, V. 1941. The genital ducts of some British stenoglossan prosobranchs. J. Mar. Biol. Ass. U.K. 25:173–211.Google Scholar
  25. Friedlander, P. 1909. Ueber den Farbstoff des antiken Purpura aus Murex brandaris. Ber. 42:765–770.Google Scholar
  26. Fujise, Y., Miwa, K., and Ito, S. 1980. Structure of tyriverdin, the intermediate precursor to Tyrian purple. Chem. Let. 6:631–632.CrossRefGoogle Scholar
  27. Gibson, C., and Wilson, S. 2003. Imposex still evident in Australia 10 years after tributyltin restrictions. Mar. Environ. Res. 55:101–112.PubMedCrossRefGoogle Scholar
  28. Haubrichs, R. 2004. L’etude de la pourpre: Histoire d’une couleur, chimie et experimentations. Preist. Alp 20:133–160.Google Scholar
  29. Haubrichs, R. 2006. Natural history and iconography of purple shells, Indirubin, the Red Shade of Indigo. pp. 55–70, in L. Meijer, N. Guyard, A. L. Skaltsounis, and G. Eisenbrand (eds.). Life in Progress Editions, Roscoff, France.Google Scholar
  30. Higa, T., and Scheuer, P. 1976. Bisindoxyl-derived blue marine pigments. Heterocycles 4:227–230.Google Scholar
  31. Karapanagiotis, I., De, and Villemereuil, V. 2006. Identification of the colouring constituents of four natural indigoid dyes. Liq. Chromatogr. Relat. Technol. 29:1491–1502.CrossRefGoogle Scholar
  32. Kay, E., Wells, F., and Ponder, W. 1998. Class Gastropoda, Mollusca the Southern Synthesis Part B. p. 161, in P. Beesley, G. Ross, and A. Wells (eds.). CSIRO, Melbourne, Australia.Google Scholar
  33. Koren, Z. 1995. High-performance liquid chromatographic analysis of an ancient Tyrian purple dyeing vat from Israel. Isr. J. Chem. 35:117–124.Google Scholar
  34. Koren, Z. 2006. HPLC-PDA analysis of brominated indirubinoid, indigoid and isatinoid dyes, Indirubin, the Red Shade of Indigo. pp. 45–53, in L. Meijer, N. Guyard, A. L. Skaltsounis, and G. Eisenbrand (eds.). Life in Progress Editions, Roscoff, France.Google Scholar
  35. Magiatis, P., and Skaltsounis, A. L. 2006. From Hexaplex trunculus to new kinase inhibitory indirubins, Indirubin, the Red Shade of Indigo. pp. 147–156, in L. Meijer, N. Guyard, A. L. Skaltsounis, and G. Eisenbrand (eds.). Life in Progress Editions, Roscoff, France.Google Scholar
  36. Marchini, D., Giordano, P., Amons, R., Bernini, L., and Dallai, R. 1993. Purification and primary structure of ceratotoxins A and B, two antibacterial peptides from the female reproductive accessory glands of the medfly Ceratitis capitata (Insecta: Diptera). Insect Biochem. Mol. Biol. 5:591–598.CrossRefGoogle Scholar
  37. Mcgovern, P., and Michel, R. 1990. Royal purple dye: The chemical reconstruction of the ancient Mediterranean industry. Acc. Chem. Res. 23:152–158.CrossRefGoogle Scholar
  38. Mcgovern, P., Lazar, J., and Michel, R. 1990. The analysis of indigoid dyes by mass-spectrometry. J. Soc. Dyers Colour 106:22–25.CrossRefGoogle Scholar
  39. Meijer, L., Skaltsounis, A. L., Magiatis, P., Polychronopoulos, P., Knockaert, M., Leost, M., yan, X., Vonica, C., Brivanlou, A., Dajani, R. et al. 2003. GSK-3-Selective inhibitors derived from Tyrian purple indirubins. Chem. Biol. 10:1255–1266.PubMedCrossRefGoogle Scholar
  40. Michel, R., Lazar, J., and Mcgovern, P. 1992. The chemical composition of indigoid dyes from the hypobranchial glandular secretions of Murex molluscs. J. Soc. Dyers Colour 108:150–154.Google Scholar
  41. Middlefart, P. 1992a. Morphology and anatomy of Chicoreus brunneus (Link, 1807): Description of shell and soft part. T. M. M. P. 11:54–60.Google Scholar
  42. Middlefart, P. 1992b. Morphology and anatomy of Chicoreus ramosus (Linnaeus, 1758) soft parts. T. M. M. P. 11:54–60.Google Scholar
  43. Naegel, L., and Cooksey, C. 2002. Tyrian purple from marine muricids, especially from Plicopurpura pansa (Gould, 1853). J. Shellfish Res. 21:193–200.Google Scholar
  44. Palma, H., Paredes, J., and Cristi, E. 1991. 6,6′-dibromoindigotin en capsulas de embriones di Concholepas concholepas (Bruguiere, 1789). Medio. Ambiente. 11:93–95.Google Scholar
  45. Peck, A. 1970. Aristotles’ Historia Animalium. Harvard University Press, Great Britain.Google Scholar
  46. Polec-Pawlak, K., Puchalaska, M., Witiwska-Jarosz, J., and Jarosz, M. 2006. Mass spectrometry: An efficient tool for the identification of indirubin and indigo related dyestuffs, Indirubin, the Red Shade of Indigo. pp. 115–125, in L. Meijer, N. Guyard, A. L. Skaltsounis, and G. Eisenbrand (eds.). Life in Progress Editions, Roscoff, France.Google Scholar
  47. Puchalaska, M., Polec-Pawlak, K., Zandronza, I., Hryszko, H., and Jarosz, M. 2004. Identification of natural indigoid dyes in natural organic pigments used in historical art objects by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry. J. Mass Spectrom. 39:1441–1449.CrossRefGoogle Scholar
  48. Rash, L., and Hodgson, W. 2002. Pharmacology and biochemistry of spider venoms. Toxicon 40:225–254.PubMedCrossRefGoogle Scholar
  49. Roller, R., Rickett, J., and Stickle, W. 1995. The hypobranchial gland of the estuarine snail Stramonita haemastoma canaliculata (Gray) (Prosobranchia: Muricidae): a light electron microscopical study. Am. Malacol. Bull. 11:177–190.Google Scholar
  50. Roseghini, M., Severini, C., Falconieri, E., and Erspamer, V. 1996. Choline esters and biogenic amines in the hypobranchial gland of 55 molluscan species of the neogastropod Muricidae Superfamily. Toxicon 34:33–55.PubMedCrossRefGoogle Scholar
  51. Rosetto, M., Manetti, A., Giordano, P., Marri, L., Amos, R., Baldari, C., Marchini, D., and Dallai, R. 1996. Molecular characterization of ceratotoxin C, a novel antibacterial female-specific peptide of the ceratotoxin family from the medfly Ceratitis capitata. Eur. J. Biochem. 241:330–337.PubMedCrossRefGoogle Scholar
  52. Susse, P., and Krampe, C. 1979. 6,6′-dibromo-indigo, a main component of Tyrian purple. Its crystal structure and light absorption. Naturwissenschaften 66:110.CrossRefGoogle Scholar
  53. Szostek, B., Orska-Gawrys, J., Surowiec, I., and Trojanowicz, M. 2003. Investigation of natural dyes occurring in historical Coptic textiles by high-performance liquid chromatography with UV-Vis and mass spectrometric detection. J. Chromatogr. 1012:179–192.CrossRefGoogle Scholar
  54. Verhecken, A. 1989. The indole pigments of Mollusca. Annales de la Societe Royale Zoologique de Belgique 119:181–197.Google Scholar
  55. Vine, K., Locke, J., anson, M., Benkendorff, K., Pyne, S., and Bremner, J. 2007. In vitro cytotoxicity evaluation of some substituted isatin derivatives. Bioorg. Med. Chem. 15:931–938.PubMedCrossRefGoogle Scholar
  56. Westley, C., Vine, K., and Benkendorff, K. 2006. A proposed functional role for indole derivatives in reproduction and defense of the Muricidae (Neogastropoda: Mollusca), Indirubin, the Red Shade of Indigo. pp. 31–44, in L. Meijer, N. Guyard, A. L. Skaltsounis, and G. Eisenbrand (eds.). Life in Progress Editions, Roscoff, France.Google Scholar
  57. Withnall, R., Patel, D., Cooksey, C., and Naegel, L. 2003. Chemical studies of the purple dye of Purpura pansa. Dyes in History and Archaeology 1617:91–96.Google Scholar
  58. Wouters, J. 1992. A new method for the analysis of blue and purple dyes in textiles. Dyes in History and Archaeology 10:17–21.Google Scholar
  59. Wouters, J., and Verhecken, A. 1991. High-performance liquid chromatography of blue and purple indigoid natural dyes. J. Soc. Dyers Colour. 107:266–269.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Biological SciencesFlinders UniversityAdelaideAustralia

Personalised recommendations