Advertisement

Journal of Chemical Ecology

, 33:2245 | Cite as

Antifungal Activity of a New Phenolic Compound from Capitulum of a Head Rot-resistant Sunflower Genotype

  • Elena Prats
  • Juan C. Galindo
  • Maria E. Bazzalo
  • Alberto León
  • Francisco A. Macías
  • Diego Rubiales
  • Jesús V. Jorrín
Article

Abstract

In a previous study, we observed that bract and corolla extracts from a Sclerotinia sclerotiorum-resistant sunflower contained high amounts of the known coumarins scopoletin, scopolin, and ayapin. There was a correlation between coumarin concentration and disease resistance. Thin layer chromatography showed higher concentrations of three other compounds in the resistant genotype when compared to the susceptible. A bioassay-directed purification that used column chromatography and HPLC allowed the isolation of a new compound, 3-acetyl-4-acetoxyacetophenone, and known compounds, demethoxyencecalin and 3-acetyl-4-hydroxyacetophenone. Structures were assigned from spectral data, and bioactivities were characterized by in vitro bioassays against S. sclerotiorum. The new compound, 3-acetyl-4-acetoxyacetophenone, had an antifungal activity similar to the coumarin ayapin, previously described as a potent Sclerotinia inhibitor. The speed and simplicity by which these compounds can be detected make them suitable for use in screening procedures that may identify genotypes with valuable levels of resistance. A screening of seven sunflower genotypes in a field experiment showed a correlation between these compounds and resistance to Sclerotinia.

Keywords

Acetophenones Ayapin Demethoxyencecalin Scopoletin Phenolics Coumarins Sunflower Bracts Sclerotinia sclerotiorum Allelochemicals 

Notes

Acknowledgement

This work was supported by the Spanish Ministry of Science and Technology, Project AGL 2001-2420.

References

  1. Acimovic, M. 1985. Sunflower disease mapping in Europe and some countries outside Europe in the period 1984–1986. Helia 11:41–49.Google Scholar
  2. Bate, N. J., Orr, J., Ni, W. T., Meromi, A., Nadlerhassar, T., Doerner, P. W., Dixon, R. A., Lamb, C. J., and Elkind, Y. 1994. Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc. Natl. Acad. Sci. U.S.A. 91:7608–7612.PubMedCrossRefGoogle Scholar
  3. Becerra, J., Silva, M., Delle Monache, G., and Delle Monache, F. 1983. Two new chromenes from Eupatorium glechonophyllum. Less. Rev. Latinoam. Quim. 14:92–94.Google Scholar
  4. Cabello-Hurtado, F., Durst, F., Jorrín, J. V., and Werck-Reichhart, D. 1998. Coumarins in Helianthus tuberosus: Characterization, induced accumulation and biosynthesis. Phytochemistry 49:1029–1036.CrossRefGoogle Scholar
  5. De Pascual, J., Bellido, I., González, M., Muriel, M., and Hernández, J. 1981. Aromatic compounds from Artemisia campestris subsp glutinosa. Phytochemistry 20:2417–2420.CrossRefGoogle Scholar
  6. Ding, H., Lamb, R. J., and Ames, N. 2000. Inducible production of phenolic acids in wheat and antibiotic resistance to Sitodiplosis mosellana. J. Chem. Ecol. 26:969–985.CrossRefGoogle Scholar
  7. Dixon, R. A., Achnine, L., Kota, P., Liu, C. J., Reddy, M. S. S., and Wang, L. J. 2002. The phenylpropanoid pathway and plant defense: A genomics perspective. Mol. Plant Pathol. 3:371–390.CrossRefGoogle Scholar
  8. Kulkarni, M., Nagasampagi, B., Deshpande, S., and Sharma, R. 1987. 5 chromenes from Blepharispermum subsessile. Phytochemistry 26:2969–2971.CrossRefGoogle Scholar
  9. Macías, F., Varela, R., Torres, A., Oliva, R., and Molinillo, J. 1998. Allelopathic studies in cultivar, part 10. Bioactive norsesquiterpenes from Helianthus annuus potential allelopathic activity. Phytochemistry 48:631–636.CrossRefGoogle Scholar
  10. Macías, F. A., Molinillo, J. M. G., Varela, R. M., Torres, A., and Galindo, J. C. G. 1999. Bioactive Compounds from the Genus Helianthus, pp. 121–148, in: F. A. Macías, Galindo, J. C. G., Molinillo, J. M. G., Cutler, H. G., (ed.). Recent Advances in Allelopathy, vol. I. A Science for the Future. Servicio de Publicaciones de la Universidad de Cádiz, Spain.Google Scholar
  11. Mullin, C. A., Alfatafta, A. A., Harman, J. L., Serino, A. A., and Everett, S. L. 1991. Corn rootworm feeding on sunflower and other compositae: Influence of floral terpenoid and phenolic factors, pp. 278–292, in: P. A. Hedin, (ed.). Naturally Occurring Pest Bioregulators, ACS Symposium Series No. 449. American Chemical Society, Washington, DC.Google Scholar
  12. Okunade, A., Hufford, C., Clark, A., and Lentz, D. 1997. Antimicrobial properties of the constituents of Piper aduncum. Phytotherapy Res. 11:142–144.CrossRefGoogle Scholar
  13. Pereyra, V. R., Bazzalo, M. E., and Sala, C. 1991. Variabilidad y estabilidad entre hibridos comerciales de girasol para la resistencia a la podredumbre del capitulo provocada por el hongo Sclerotinia sclerotiorum (Lib.) de Bary. 1° R. Nac. Oleagin.Google Scholar
  14. Picman, A., and Schneider, E. 1993. Inhibition of fungal growth by selected sesquiterpene lactones. Biochem. Sys. Ecol. 21:307–314.CrossRefGoogle Scholar
  15. Prats, E., Rubiales, D., and Jorrín, J. 2002. Acibenzolar-S-methyl-induced resistance to sunflower rust (Puccinia helianthi) is associated with an enhancement of coumarins on foliar surface. Physiol. Mol. Plant Pathol. 60:155–162.CrossRefGoogle Scholar
  16. Prats, E., Bazzalo, M. E., León, A., and Jorrín, J. V. 2003. Accumulation of soluble phenolic compounds in sunflower capitula correlates with resistance to Sclerotinia sclerotiorum. Euphytica 132:321–329.CrossRefGoogle Scholar
  17. Prats, E., Bazzalo, M. E., León, A., and Jorrín, J. 2006. Fungitoxic effect of scopolin and related coumarins on Sclerotinia sclerotiorum. A way to overcome sunflower head rot. Euphytica 147:451–460.CrossRefGoogle Scholar
  18. Prats, E., Llamas, M. J., Jorrín, J., and Rubiales, D. 2007. Constitutive coumarin accumulation on sunflower leaf surface prevents rust germ tube growth and appressorium differentiation. Crop Sci. 47:1–6.CrossRefGoogle Scholar
  19. Purdy, L. H. 1979. History, disease and symptomatology, host range, geographic distribution and impact. Symposium on Sclerotinia taxonomy, biology and pathology. Phytopathology 69:875–880.CrossRefGoogle Scholar
  20. Satoh, A., Utamura, H., Ishizuka, M., Endo, N., Tsuji, M., and Nishimura, H. 1996. Antimicrobial benzopyrans from the receptacle of sunflower. Biosci. Biotech. Biochem. 60:664–665.CrossRefGoogle Scholar
  21. Serghini, K. 2000. Papel defensivo de las 7-hidroxicumarinas simples de girasol (Helianthus annuus) frente a hongos (Plasmopara halstedii) y plantas parasitas (Orobanche cernua). Ph.D. Thesis. University of Cordoba, Spain.Google Scholar
  22. Spring, O., Rodon, U., and Macías, F. A. 1992. Sesquiterpenes from noncapitate glandular trichomes of Helianthus annuus. Phytochemistry 31:1541–1544.CrossRefGoogle Scholar
  23. Spring, O., Zipper, R., Conrad, J., Vogler, B., Klaiber, I., and Da Costa, F. B. 2003. Sesquiterpene lactones from glandular trichomes of Viguiera radula (Heliantheae; Asteraceae). Phytochemistry 62:1185–1189.PubMedCrossRefGoogle Scholar
  24. Srivastava, R. P., and Proksch, P. 1993. Insecticidal and antifeedant effects of compounds of plant origin against insect pests. Indian J. Plant Prot. 21:234–239.Google Scholar
  25. Tsuda, H., Ishitani, Y., Takemura, Y., Suzuki, Y., and Kato, T. 1997. 6-acetyl-8-hydroxy-2,2-dimethylchromene, an antioxidant in sunflower seeds; Its isolation and synthesis and antioxidant activity of its derivatives. Heterocycles 44:139–142.Google Scholar
  26. Urdangarin, C., Regente, M. C., Jorrín, J., and De La Canal, L. 1999. Sunflower coumarin phytoalexins inhibit the growth of the virulent pathogen Sclerotinia sclerotiorum. J. Phytopathol. 147:441–443.CrossRefGoogle Scholar
  27. Varga, E., Szendrei, K., Dinya, Z., and Reisch, J. 1984. Aromatic compounds from the stalk of Helianthus annuus. Fitoterapia 55:307–309.Google Scholar
  28. Waiss, A. C., Chan, B. G., Elliger, C. A., Dreyer, D. L., Binder, R. G., and Gueldner, R. C. 1981. Insect growth inhibitors in crop plants. Ent. Soc. Am. Bull. 27:217–221.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Elena Prats
    • 1
    • 4
  • Juan C. Galindo
    • 2
  • Maria E. Bazzalo
    • 3
  • Alberto León
    • 3
  • Francisco A. Macías
    • 2
  • Diego Rubiales
    • 4
  • Jesús V. Jorrín
    • 1
  1. 1.Grupo de Investigación Bioquímica Vegetal y Agrícola, Departamento de Bioquímica y Biología Molecular (ETSIAM)Universidad de CórdobaCordobaSpain
  2. 2.Departamento de Química Orgánica, Facultad de CienciasUniversidad de CádizPuerto RealSpain
  3. 3.Advanta Semillas S.A.I.C.BalcarceArgentina
  4. 4.Departamento de MejoraInstituto de Agricultura Sostenible (IAS-CSIC)CordobaSpain

Personalised recommendations