Journal of Chemical Ecology

, Volume 33, Issue 12, pp 2171–2194 | Cite as

Gene Expression of Different Wheat Genotypes During Attack by Virulent and Avirulent Hessian Fly (Mayetiola destructor) Larvae

  • Xuming Liu
  • Jianfa Bai
  • Li Huang
  • Lieceng Zhu
  • Xiang Liu
  • Nanyan Weng
  • John C. Reese
  • Marion Harris
  • Jeffrey J. Stuart
  • Ming-Shun Chen


Wheat and its relatives possess a number of resistance (R) genes specific for the Hessian fly (HF) [Mayetiola destructor (Say)]. HF populations overcome R gene resistance by evolving virulence. Virulent HF larvae manipulate the plant to produce a nutritionally enhanced feeding tissue and, probably, also suppress plant defense responses. Using two wheat R genes, H9 and H13, and three HF strains (biotypes) differing in virulence for H9 and H13, we conducted a genome-wide transcriptional analysis of gene expression during compatible interactions with virulent larvae and incompatible interactions with avirulent larvae. During both types of interactions, a large number of genes (>1,000) showed alterations in gene expression. Analysis of genes with known functions revealed that major targets for differential regulation were genes that encoded defense proteins or enzymes involved in the phenylpropanoid, cell wall, and lipid metabolism pathways. A combination of the enhancement of antibiosis defense, the evasion of nutrient metabolism induction, and the fortification and expansion of the cell wall are likely the collective mechanism for host-plant resistance observed during incompatible interactions. To overcome this resistance, virulent larvae appeared to suppress antibiosis defense while inducing nutrient metabolism, weakening cell wall, and inhibiting plant growth.


Hessian fly Mayetiola destructor Gall midge Host plant resistance Wheat 



This work was supported by two grants from the National Research Initiative Competitive Grant program, the US Department of Agriculture (USDA 04-35607-14861 and USDA2005-35302-16254). This paper is contribution no. 07-81-J from the Kansas Agricultural Experiment Station. Hessian fly voucher specimens (no. 150) are located in the KSU Museum of Entomological and Prairie Arthropod Research, Kansas State University, Manhattan, Kansas. The microarray chips were processed with the Affymetrix GCS 3000 system in the Gene Expression Facility, Kansas State University. The system was purchased through the NSF Major Research Instrumentation grant DBI-0421427. The authors thank Dr. Subbaratnam Muthukrishnan, Dr. Guihua Bai, and Dr. Scot Hulbert for reviewing an earlier version of the manuscript. Mention of commercial or proprietary product does not constitute endorsement by the USDA.


  1. Aarts, M. G. M., Keijzer, C. J., Stiekema, W. J., and Pereira, A. 1995. Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7:2115–2127.PubMedCrossRefGoogle Scholar
  2. Anderson, K. G., and Harris, M. O. 2006. Does R gene resistance allow wheat to prevent plant growth effects associated with Hessian fly (Diptera: Cecidomyiidae) attack? J. Econ. Entomol. 99:1842–1853.PubMedGoogle Scholar
  3. Berzonsky, W. A., Ding, H., Haley, S. D., Harris, M. O., Lamb, R. J., Mckenzie, R. I. H., Ohm, H. W., Patterson, F. L., Peairs, F., Porter, D. R., atcliffe, R. H., and Shanower, T. G. 2003. Breeding wheat for resistance to insects. Plant Breed. Rev. 22:221–296.Google Scholar
  4. Bhattarai, K. K., Xie, Q. G., Pourshalimi, D., Younglove, T., and Kaloshian, I. 2007. Coi1-dependent signaling pathway is not required for Mi-1-mediated potato aphid resistance. Mol. Plant Micro. Interact. 20:276–282.CrossRefGoogle Scholar
  5. Byers, R. A., and Gallun, R. L. 1972. Ability of the Hessian fly to stunt winter wheat. I: effect of larval feeding on elongation of leaves. J. Econ. Entomol. 65:955–958.Google Scholar
  6. Cook, R. J. 1998. The molecular mechanisms responsible for resistance in plant–pathogen interactions of the gene-for-gene type function more broadly than previously imagined. Proc. Natl. Acad. Sci. U.S.A. 95:9711–9712.PubMedCrossRefGoogle Scholar
  7. Chen, M. S., Fellers, J. P., Stuart, J. J., eese, J. C., and Liu, X.-M. 2004. A group of related cDNAs encoding secreted proteins from Hessian fly [Mayetiola destructor (Say)] salivary glands. Insect Mol. Biol. 13:101–108.PubMedCrossRefGoogle Scholar
  8. Chen, M. S., Fellers, J. P., Zhu, Y. C., Stuart, J. J., Hulbert, S., El-Bouhssini, M., and Liu, X.-M. 2006. A super-family of genes coding for secreted salivary gland proteins from the Hessian fly, Mayetiola destructor. J. Insect Sci. 6:12 ( Scholar
  9. Chisholm, S. T., Coaker, G., Day, B., and Staskawicz, B. J. 2006. Host–microbe interactions: Shaping the evolution of the plant immune response. Cell 124:803–814.PubMedCrossRefGoogle Scholar
  10. Cosgrove, D. J. 2003. Expansion of the plant cell wall. Annual Plant Rev. 8:237–258.Google Scholar
  11. Davin, L. B., and Lewis, N. G. 2005. Dirigent phenoxy radical coupling: advances and challenges. Curr. Opin. Biotechnol. 16:398–406.PubMedCrossRefGoogle Scholar
  12. Dixon, R. A., Achnine, L., Kota, P., Liu, C. J., and eddy, M. S. S. 2002. The phenylpropanoid pathway and plant defence—a genomics perspective. Mol. Plant Pathol. 3:371–390.CrossRefPubMedGoogle Scholar
  13. Dodds, P. N., Lawrence, G. J., Catanzariti, A. M., The, T., Wang, C. I. A., Ayliffe, M. A., Kobe, B., and Ellis, J. G. 2006. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc. Natl. Acad. Sci. U.S.A. 103:8888–8893.PubMedCrossRefGoogle Scholar
  14. Dogimont, C., Bendahmane, A., Pauquet, J., Burget, E., Desloire, S., Hagen, L., Caboche, M., and Pitrat, M. 2003. Map-based cloning of the Vat gene confers resistance to both aphid colonization and virus transmission. In Proceedings of the 11th International Congress on Molecular Plant–Microbe Interactions, July 2003, St. Petersburg, Russia.Google Scholar
  15. Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. U.S.A. 95:14863–14868.PubMedCrossRefGoogle Scholar
  16. Ferre, H., Broberg, A., Duus, J. O., and Thomsen, K. K. 2000. A novel type of arabinoxylan arabinofuranohydrolase isolated from germinated barley: analysis of substrate preference and specificity by nano-probe NMR. Eur. J. Biochem. 267:6633–6641.PubMedCrossRefGoogle Scholar
  17. Flor, H. H. 1955. Host–parasite interaction in flax rust: its genetics and other implication. Phytopathology 42:680–685.Google Scholar
  18. Garcia-Brugger, A., Lamotte, O., Vandelle, E., Bourque, S., Lecourieux, D., Poinssot, B., Wendehenne, D., and Pugin, A. 2006. Early signaling events induced by elicitor of plant defenses. Mol. Plant Microbe Interact. 19:711–724.PubMedCrossRefGoogle Scholar
  19. Giovanini, M. P., Saltzmann, K. D., Puthoff, D. P., Gonzalo, M., Ohm, H. W., and Williams, C. E. 2007. A novel wheat gene encoding a putative chitin-binding lectin is associated with resistance against Hessian fly. Mol. Plant Pathol. 8:69–82.CrossRefPubMedGoogle Scholar
  20. Goggin, F. L., Williamson, V. M., and Ullman, D. E. 2001. Variability in the response of Macrosiphum euphorbiae and Myzus persicae (Hemiptera: Aphididae) to the tomato resistance gene Mi. Environ. Entomol. 30:101–106.CrossRefGoogle Scholar
  21. Goggin, F. L., Shah, G., Williamson, V. M., and Ullman, D. E. 2004. Developmental regulation of Mi-mediated aphid resistance is independent of Mi-1.2 transcript levels. Mol. Plant Micro. Interact. 17:532–536.CrossRefGoogle Scholar
  22. Goggin, F. L., Jia, L., Shah, G., Hebert, S., Williamson, V. M., and Ullman, D. E. 2006. Heterologous expression of the Mi-1.2 gene from tomato confers resistance against nematodes but not aphids in eggplant. Mol. Plant Micro. Interact. 19:383–388.CrossRefGoogle Scholar
  23. Hammond-Kosack, K. E., and Jones, J. D. G. 1996. Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791.PubMedCrossRefGoogle Scholar
  24. Harris, M. O., Stuart, J. J., Mohan, M., Nair, S., Lamb, R. J., and ohfritsch, O. 2003. Grasses and gall midges: plant defense and insect adaptation. Ann. Rev. Entomol. 48:549–577.CrossRefGoogle Scholar
  25. Harris, M. O., Freeman, T. P., ohfritsch, O., Anderson, K. G., Payne, S. A., and Moore, J. A. 2006. Virulent Hessian fly (Diptera: Cecidomyiidae) larvae induce a nutritive tissue during compatible interactions with wheat. Ann. Entomol. Soc. Am. 99:305–316.CrossRefGoogle Scholar
  26. Hatchett, J. H., and Gallun, R. L. 1970. Genetics of the ability of the Hessian fly, Mayetiola destructor, to survive on wheats having different genes for resistance. Ann. Entomol. Soc. Am. 63:1400–1407.Google Scholar
  27. Hatchett, J. H., Kreitner, G. L., and Elzinga, R. J. 1990. Larval mouthparts and feeding mechanism of the Hessian fly (Diptera: Cecidomyiidae). Ann. Entomol. Soc. Am. 83:1137–1147.Google Scholar
  28. Iwai, H., Masaoka, N., Ishii, T., and Satoh, S. 2002. A pectin glucuronyltransferase gene is essential for intercellular attachment in the plant meristem. Proc. Natl. Acad. Sci. U.S.A. 99:16319–16324.PubMedCrossRefGoogle Scholar
  29. Jang, C. S., Kim, J. Y., Haam, J. W., Lee, M. S., Kim, D. S., Li, Y. W., and Seo, Y. W. 2003. Expressed sequence tags from a wheat-rye translocation line (2BS/2RL) infested by larvae of Hessian fly [Mayetiola destructor (Say)]. Plant Cell Rep. 22:150–158.PubMedCrossRefGoogle Scholar
  30. Kalashian, I. 2004. Gene-for-gene disease resistance: bridging insect pest and pathogen defense. J. Chem. Ecol. 30:2419–2438.CrossRefGoogle Scholar
  31. Kaloshian, I., and Walling, L. L. 2005. Hemipterans as plant pathogens. Ann. Rev. Phytopathol. 43:491–521.CrossRefGoogle Scholar
  32. Kaygun, H., and Marzluff, W. F. 2005. Regulated degradation of replication-dependent histone mRNAs requires both ATR and Upf1. Nat. Struct. Mol. Biol. 12:794–800.PubMedCrossRefGoogle Scholar
  33. Keen, N. T. 1990. Gene-for gene complementarity in plant–pathogen interactions. Ann. Rev. Genet. 24:447–463.PubMedCrossRefGoogle Scholar
  34. Kobayashi, I., and Hakuno, H. 2003. Actin-related defense mechanism to reject penetration attempt by a non-pathogen is maintained in tobacco BY-2 cells. Planta. 217:340–345.PubMedGoogle Scholar
  35. Kobayashi, Y., Kobayashi, I., Fuaki, Y., Fujimoto, S., Takemoto, T., and Kunoh, H. 1997. Dynamic reorganization of microfilaments and microtubules is necessary for the expression of non-host resistance in barley coleoptile cells. Plant J. 11:525–537.CrossRefGoogle Scholar
  36. Liu, X. M., Fritz, A. K., eese, J. C., Wilde, G. E., Gill, B. S., and Chen, M. S. 2005a. H9, H10, and H11 compose a cluster of Hessian fly-resistance genes in the distal gene-rich region of wheat chromosome 1AS. Theor. Appl. Genet. 110:1473–1480.PubMedCrossRefGoogle Scholar
  37. Liu, X. M., Gill, B. S., and Chen, M. S. 2005b. Hessian fly resistance gene H13 is mapped to a distal cluster of R genes in chromosome 6DS of wheat. Theor. Appl. Genet. 111:243–249.PubMedCrossRefGoogle Scholar
  38. Liu, X. M., Fellers, J. P., Zhu, Y. C., Mutti, N. S., El-Bouhssini, M., and Chen, M. S. 2006. Cloning and characterization of cDNAs encoding carboxypeptidase-like proteins from the gut of Hessian fly [Mayetiola destructor (Say)] larvae. Insect Biochem. Mol. Biol. 36:665–673.PubMedCrossRefGoogle Scholar
  39. Lobo, N. F., Behura, S. K., Aggarwal, R., Chen, M. S., Collins, F. H., and Stuart, J. J. 2006. Genomic analysis of a 1 Mb region near the telomere of Hessian fly chromosome X2 and avirulence gene vH13. BMC Genomics 7:7.PubMedCrossRefGoogle Scholar
  40. Martin, G. B., Bogdanove, A. J., and Sessa, G. 2003. Understanding the functions of plant disease resistance proteins. Ann. Rev. Plant Biol. 54:23–61.CrossRefGoogle Scholar
  41. Milligan, S. B., Bordeau, J., Yaghoobi, J., Kaloshian, I., and Williamson, V. M. 1998. The root-knot nematode resistance gene Mi from tomato is a member of leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319.PubMedCrossRefGoogle Scholar
  42. Moreno, J., Altabella, T., and Maarten, J. 1990. Characterization of α-amylase-inhibitor, a lectin-like protein in the seeds of Phaseolus vulgaris. Plant Physiol. 92:703–709.PubMedCrossRefGoogle Scholar
  43. Murdock, L. L., Shade, R. E., and Pomeroy, M. A. 1988. Effects of E-64, a cysteine proteinase-inhibitor, on cowpea weevil growth, development, and fecundity. Environ. Entomol. 17:467–469.Google Scholar
  44. Natella, F., Nardini, M., Felice, M. D., and Scaccini, C. 1999. Benzoic and cinnamic acid derivatives as antioxidants: structure-activity relation. J. Agric. Food Chem. 47:1453–1459.PubMedCrossRefGoogle Scholar
  45. Nimchuk, Z., Eulgem, T., Holt, B. F. III, and Dangl, J. L. 2003. Recognition and response in the plant immune system. Ann. Rev. Genet. 37:579–609.PubMedCrossRefGoogle Scholar
  46. Nombela, G., Williamson, V. M., and Muniz, M. 2003. The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Benisia tabaci. Mol. Plant Micro. Interact. 16:645–649.CrossRefGoogle Scholar
  47. Panda, N., and Khush, G. S. 1995. Host plant resistance to insects. CAB Int., Wallingford, UK.Google Scholar
  48. Patterson, F. L., Mass, F. B. III, Foster, J. E., atcliffe, R. H., Cambron, S., Safranski, G., Taylor, P. L., and Ohm, H. W. 1994. Registration of eight Hessian fly resistant common winter wheat germplasm lines (Carol, Erin, Flynn, Iris, Joy, Karen, Lola, and Molly). Crop Sci. 34:315–316.CrossRefGoogle Scholar
  49. Perrin, R. M., Derocher, A. E., Bar-Peled, M., Zeng, W., Norambuena, L., Orellana, A., aikhle, N. V., and Keegstra, K. 1999. Xyloglucan fucosyltransferase, an enzyme involved in plant cell wall biosynthesis. Science 284:1976–1979.PubMedCrossRefGoogle Scholar
  50. Peumans, W. J., and Van Damme, E. J. M. 1995. Lectins as plant defense proteins. Plant Physiol. 109:347–352.PubMedCrossRefGoogle Scholar
  51. Puthoff, D. P., Sardesa, N., Subramany, A. M. S., Nemacheck, J. A., and Williams, C. E. 2005. Hfr-2, a wheat cytolytic toxin-Like gene, is up-regulated by virulent Hessian fly larvae and feeding. Plant Mol. Biol. 6:411–423.Google Scholar
  52. Quisenberry, S. S., and Clement, S. L. 2002. Conservation and use of global plant genetic resources for insect resistance. Aust. J. Agric. Res. 53:865–872.CrossRefGoogle Scholar
  53. Rasmussen, S., and Dixon, R. A. 1999. Transgene-mediated and elicitor-induced perturbation of metabolic channeling at the entry point into the phenylpropanoid pathway. Plant Physiol. 115:137–149.Google Scholar
  54. Ratcliffe, R. H., and Hatchett, J. H. 1997. Biology and genetics of the Hessian fly and resistance in wheat, pp. 47–56, in New Developments in EntomologyResearch Signpost, Trivandrum, India.Google Scholar
  55. Rohfritsch, O. 1992. Patterns in gall development, pp. 60–86, in Biology of insect-induced gallsOxford University Press, New York.Google Scholar
  56. Rossi, M. F., Goggin, L., Milligan, S. B., Kaloshian, I., Ullman, D. E., and Williamson, V. M. 1998. The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc. Natl. Acad. Sci. U.S.A. 95:9750–9754.PubMedCrossRefGoogle Scholar
  57. Schmelz, E. A., Carroll, M. J., Leclere, S., Phipps, S. M., Meredith, J., Chourey, P. S., Alborn, H. T., and Teal, P. E. A. 2006. Fragments of ATP synthase mediate plant perception of insect attack. Proc. Natl. Acad. Sci. U.S.A. 103:8894–8899.PubMedCrossRefGoogle Scholar
  58. Subramanyam, S., Sardesai, N., Puthoff, D. P., Meyer, J. M., Gonzalo, M., and Williams, C. E. 2006. Expression of two wheat defense-response genes, Hfr-1 and Wci-1, under biotic and abiotic stresses. Plant Sci. 170:90–103.CrossRefGoogle Scholar
  59. Thompson, G. A., and Goggin, F. L. 2006. Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. J. Exp. Botany 57:755–766.CrossRefGoogle Scholar
  60. Vercauteren, I., De Almeida Engler, J., De Groodt, R., and Gheysen, G. 2002. An Arabidopsis thaliana pectin acetylesterase gene is upregulated in nematode feeding sites induced by root-knot and cyst nematodes. Mol. Plant Micro. Interact. 15:404–407.CrossRefGoogle Scholar
  61. Widstrom, N. W., and Snook, M. E. 1998. A gene controlling biosynthesis of isoorientin, a compound in corn silks antibiotic to the corn earworm. Entomol. Exp. Appl. 89:119–124.CrossRefGoogle Scholar
  62. Williams, C. E., Collier, C. C., Nemacheck, J., Liang, C., and Cambron, S. E. 2002. A lectin-like wheat gene responds systemically to attempted feeding by avirulent first-instar Hessian fly larvae. J. Chem. Ecol. 28:1411–1428.PubMedCrossRefGoogle Scholar
  63. Zhu, Y. C., Liu, X. M., Maddur, A. A., Oppert, B., and Chen, M. S. 2005. Cloning and characterization of chymotrypsin- and trypsin-like cDNAs from the gut of the Hessian fly [Mayetiola destructor (Say)]. Insect Biochem. Mol. Biol. 35:23–32.PubMedCrossRefGoogle Scholar
  64. Zhu, L., Liu, X. M., Liu, X., Jeannotte, R., eese, J. C., Harris, M., Stuart, J. J., and Chen, M. S. 2007. Hessian Fly (Mayetiola Destructor) attack causes dramatic shift in carbon/nitrogen metabolism in wheat. Mol. Plant Micro. Interact (in press).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Xuming Liu
    • 1
  • Jianfa Bai
    • 2
  • Li Huang
    • 2
  • Lieceng Zhu
    • 1
  • Xiang Liu
    • 1
  • Nanyan Weng
    • 2
  • John C. Reese
    • 1
  • Marion Harris
    • 3
  • Jeffrey J. Stuart
    • 4
  • Ming-Shun Chen
    • 1
    • 5
  1. 1.Department of EntomologyKansas State UniversityManhattanUSA
  2. 2.Department of Plant PathologyKansas State UniversityManhattanUSA
  3. 3.Department of EntomologyNorth Dakota State UniversityFargoUSA
  4. 4.Department of EntomologyPurdue UniversityWest LafayetteUSA
  5. 5.USDA-ARS-PSERUKansas State UniversityManhattanUSA

Personalised recommendations