Do European Corn Borer Females Detect and Avoid Laying Eggs in the Presence of 20-Hydroxyecdysone?

  • Delphine Calas
  • Andrée Berthier
  • Frédéric Marion-Poll


European corn borer larvae detect and avoid feeding in the presence of phytoecdysteroids (PEs) such as 20-hydroxyecdysone (20E). Therefore, we hypothesized that females would have taste receptors similar to larvae and avoid laying eggs in the presence of 20E. We found female-specific taste sensilla on the tarsi that respond to 20E at concentrations as low as 10−6 M, a threshold comparable to that of larvae. However, in choice tests, females laid a similar number of eggs on 20E-treated and on nontreated artificial substrates (filter paper, glass, and nylon), although they spent significantly more time in behavioral sequences related to substrate assessment when 20E was present. In contrast, when given a choice between maize plants (eight leaves) sprayed with 20E or only the solvent, females laid 70% fewer eggs on the treated than on control plants. These observations suggest that other chemical cues of plant origin must be present at the same time as 20E for females to modify their oviposition behavior.


Ostrinia nubilalis 20-hydroxyecdysone Taste Electrophysiology Oviposition behavior Host plant Maize 



We thank René Lafont (University Paris VI) for his gift of 20E used in this study and numerous discussions. We thank Alan Cork for reviewing the manuscript as well as two anonymous referees and the editor for their useful suggestions. This work was supported by an INCO-DEV program SUSVEG-ASIA.


  1. Akhtar, Y. and Isman, M. B. 2003. Larval exposure to oviposition deterrents alters subsequent oviposition behavior in generalist, Trichoplusia ni and specialist, Plutella xylostella moths. J. Chem. Ecol. 29:1853–1870.PubMedCrossRefGoogle Scholar
  2. Bethenod, M. T., Thomas, Y., Rousset, F., Frerot, B., Pelozuelo, L., Genestier, G., and Bourguet, D. 2005. Genetic isolation between two sympatric host plant races of the European corn borer, Ostrinia nubilalis Hübner. II. Assortative mating and host–plant preferences for oviposition. Heredity 94: 264–270.PubMedCrossRefGoogle Scholar
  3. Binder, B. F. and Robbins, J. C. 1996. Age- and density-related oviposition behavior of the European corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae). J. Insect Behav. 9:755–769.CrossRefGoogle Scholar
  4. Binder, B. F. and Robbins, J. C. 1997. Effect of terpenoids and related compounds on the oviposition behavior of the European corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae). J. Agric. Food Chem. 45:980–984.CrossRefGoogle Scholar
  5. Binder, B. F., Robbins, J. C., and Wilson, R. L. 1995. Chemically mediated ovipositional behaviors of the European corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae). J. Chem. Ecol. 21:1315–1327.CrossRefGoogle Scholar
  6. Bruce, T. J. A., Wadhams, L. J., and Woodcock, C. M. 2005. Insect host location: a volatile situation. Trends Plant Sci. 10:269–274.PubMedCrossRefGoogle Scholar
  7. Calas, D., Thiéry, D. and Marion-Poll, F. 2006. 20-Hydroxyecdysone deters oviposition and larval feeding in the European grapevine moth, Lobesia botrana. J. Chem. Ecol. 32:2443–2454.PubMedCrossRefGoogle Scholar
  8. Chapman, R. F. and Bernays, E. A. 1989. Insect behavior at the leaf surface and learning as aspects of host plant selection. Experientia 45:215–222.CrossRefGoogle Scholar
  9. Darazy-Choubaya, D. 2002. La perception gustative des phytoecdystéroides par les larves de la pyrale du mais, Ostrinia nubilalis Hübner. Ph.D. thesis, Ecole doctorale ABIES, INA-PG, Paris (106 pp.).Google Scholar
  10. De Jong, R. and Städler, E. 1999. The influence of odour on the oviposition behaviour of the cabbage root fly. Chemoecology 9:151–154.CrossRefGoogle Scholar
  11. Derridj, S., Fiala, V., and Jolivet, E. 1986. Increase of European corn borer (Ostrinia nubilalis) oviposition induced by a treatment of maize plants with maleic hydrazide: role of leaf carbohydrate content. Entomol. Exp. Appl. 41:305–310.CrossRefGoogle Scholar
  12. Devarenne, T. P., Sen-Michael, B., and Adler, J. H. 1995. Biosynthesis of ecdysteroids in Zea mays. Phytochemistry 40:1125–1131.CrossRefGoogle Scholar
  13. Dinan, L. 1998. A strategy towards the elucidation of the contribution made by phytoecdysteroids to the deterrence of invertebrate predators on plants. Russ. J. Plant Physiol. 45:296–305.Google Scholar
  14. Dinan, L., Savchenko, T., and Whiting, P. 2001. On the distribution of phytoecdysteroids in plants. Cell. Mol. Life Sci. 58:1121–1132.PubMedCrossRefGoogle Scholar
  15. Eigenbrode, S. D. 2004. The effects of plant epicuticular waxy blooms on attachment and effectiveness of predatory insects. Arthropod Struct. Develop. 33:91–102.CrossRefGoogle Scholar
  16. Eigenbrode, S. D. and Espelie, K. E. 1995. Effects of plant epicuticular lipids on insect herbivores. Annu. Rev. Entomol. 40:171–194.CrossRefGoogle Scholar
  17. Espelie, K. E., Bernays, E. A., and Brown, J. J. 1991. Plant and insect cuticular lipids serve as behavioral cues for insects. Arch. Insect Biochem. Physiol. 17:223–233.Google Scholar
  18. Feeny, P., Städler, E., Ahman, I., and Carter, M. 1989. Effects of plant odor on oviposition by the black swallowtail butterfly, Papilio polyxenes (Lepidoptera: Papilionidae). J. Insect Behav. 2:803–827.CrossRefGoogle Scholar
  19. Garnier-Geoffroy, F., Robert, P., Hawlitzky, N., and Frerot, B. 1996. Oviposition behaviour in Ostrinia nubilalis (Lep: Pyralidae) and consequences on host location and oviposition in Trichogramma brassicae (Hym: Trichogrammatidae). Entomophaga 41:287–299.Google Scholar
  20. Hodgson, B. E. 1928. The host plants of European corn borer in New England. USDA Tech. Bull. 77:1–63.Google Scholar
  21. Kennedy, G. G. and Storer, N. P. 2000. Life systems of polyphagous arthropod pests in temporally unstable cropping systems. Annu. Rev. Entomol. 45:467–493.PubMedCrossRefGoogle Scholar
  22. Krishna, P. 2003. Brassinosteroid-mediated stress responses. J. Plant Growth Regul. 22:289–297.PubMedCrossRefGoogle Scholar
  23. Li, G. Q. and Ishikawa, Y. 2006. Leaf epicuticular wax chemicals of the Japanese knotweed Fallopia japonica as oviposition stimulants for Ostrinia latipennis. J. Chem. Ecol. 32:595–604.PubMedCrossRefGoogle Scholar
  24. Lombarkia, N. and Derridj, S. 2002. Incidence of apple fruit and leaf surface metabolites on Cydia pomonella oviposition. Entomol. Exp. Appl. 104:79–87.CrossRefGoogle Scholar
  25. Lupoli, R., Marion-Poll, F., Pham-Delegue, M. H., and Masson, C. 1990. Effect of maize leaf volatiles on the oviposition preferences of Ostrinia nubilalis (Lepidoptera: Pyralidae). C. R. Acad. Sci., Sér. 3 Sci. Vie 311:225–230.Google Scholar
  26. Malausa, T., Bethenod, M. T., Bontemps, A., Bourguet, D., Cornuet, J. M., and Ponsard, S. 2005. Assortative mating in sympatric host races of the European corn borer. Science 308:258–260.PubMedCrossRefGoogle Scholar
  27. Marion-Poll, F. and Descoins, C. 2002. Taste detection of phytoecdysteroids in larvae of Bombyx mori, Spodoptera littoralis and Ostrinia nubilalis. J. Insect Physiol. 48:467–476.PubMedCrossRefGoogle Scholar
  28. Marion-Poll, F., Guillaumin, D., and Masson, C. 1992. Sexual dimorphism of tarsal receptors and sensory equipment of the ovipositor in the European corn borer, Ostrinia nubilalis. Cell Tissue Res. 267:507–518.PubMedCrossRefGoogle Scholar
  29. Marion-Poll, F., Dinan, L., and Lafont, R. 2005. The role of phytoecdysteroids in the control of phytophagous insects, in C. Regnault-Roger, B. J. Philogène, C. Vincent (eds.). Biopesticides of Plant Origin. Lavoisier, Paris, France.Google Scholar
  30. Meunier, N., Marion-Poll, F., Lansky, P., and Rospars, J. P. 2003. Estimation of the individual firing frequencies of two neurons recorded with a single electrode. Chem. Senses 28:671–679.PubMedCrossRefGoogle Scholar
  31. Miles, C. I., Del Campo, M. L., and Renwick, J. A. 2005. Behavioral and chemosensory responses to a host recognition cue by larvae of Pieris rapae. J. Comp. Physiol., A. 191:147–155.CrossRefGoogle Scholar
  32. Müller, C. and Riederer, M. 2005. Plant surface properties in chemical ecology. J. Chem. Ecol. 31:2621–2651.PubMedCrossRefGoogle Scholar
  33. Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., Sekimata, K., Takatsuto, S., Yamaguchi, I., and Yoshida, S. 2003. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 33:887–898.PubMedCrossRefGoogle Scholar
  34. Qiu, Y. T., Van Loon, J. J. A., and Roessingh, P. 1998. Chemoreception of oviposition inhibiting terpenoids in the diamondback moth Plutella xylostella. Entomol. Exp. Appl. 87:143–155.CrossRefGoogle Scholar
  35. Renwick, J. A. A. 2002. The chemical world of crucivores: lures, treats and traps. Entomol. Exp. Appl. 104:35–42.CrossRefGoogle Scholar
  36. Roessingh, P., Hora, K. H., Fung, S. Y., Peltenburg, A., and Menken, S. B. J. 2000. Host acceptance behaviour of the small ermine moth Yponomeuta cagnagellus: larvae and adults use different stimuli. Chemoecology 10:41–47.CrossRefGoogle Scholar
  37. Schmelz, E. A., Grebenok, R. J., Galbraith, D. W., and Bowers, W. S. 1999. Insect-induced synthesis of phytoecdysteroids in spinach, Spinacia oleracea. J. Chem. Ecol. 25:1739–1757.CrossRefGoogle Scholar
  38. Schmelz, E. A., Grebenok, R. J., Ohnmeiss, T. E., and Bowers, W. S. 2000. Phytoecdysteroid turnover in spinach: long-term stability supports a plant defense hypothesis. J. Chem. Ecol. 26:2883–2896.CrossRefGoogle Scholar
  39. Schurr, K. and Holdaway, F. G. 1970. Olfactory responses of female Ostrinia nubilalis (Lepidoptera: Pyraustinae). Entomol. Exp. Appl. 13:455–461.CrossRefGoogle Scholar
  40. Spangler, S. M. and Calvin, D. D. 2000. Influence of sweet corn growth stages on European corn borer (Lepidoptera: Crambidae) oviposition. Environ. Entomol. 29:1226–1235.Google Scholar
  41. Spangler, S. M. and Calvin, D. D. 2001. Vertical distribution of European corn borer (Lepidoptera: Crambidae) egg masses on sweet corn. Environ. Entomol. 30:274–279.CrossRefGoogle Scholar
  42. Spencer, J. L. 1996. Waxes enhance Plutella xylostella oviposition in response to sinigrin and cabbage homogenates. Entomol. Exp. Appl. 81:165–173.CrossRefGoogle Scholar
  43. Spencer, J. L., Pillai, S., and Bernays, E. A. 1999. Synergism in the oviposition behavior of Plutella xylostella: sinigrin and wax compounds. J. Insect Behav. 12:483–500.CrossRefGoogle Scholar
  44. Tallamy, D. W., Stull, J., Ehresman, N. P., Gorski, P. M., and Mason, C. E. 1997. Cucurbitacins as feeding and oviposition deterrents to insects. Environ. Entomol. 26:678–683.Google Scholar
  45. Thompson, J. N. and Pellmyr, O. 1991. Evolution of oviposition behavior and host preference in Lepidoptera. Annu. Rev. Entomol. 36:65–89.CrossRefGoogle Scholar
  46. Udayagiri, S. and Mason, C. E. 1995. Host plant constituents as oviposition stimulants for a generalist herbivore: European corn borer. Entomol. Exp. Appl. 76:59–65.CrossRefGoogle Scholar
  47. Udayagiri, S. and Mason, C. E. 1997. Epicuticular wax chemicals in Zea mays influence oviposition in Ostrinia nubilalis. J. Chem. Ecol. 23:1675–1687.CrossRefGoogle Scholar
  48. Vrieling, K. and Derridj, S. 2003. Pyrrolizidine alkaloids in and on the leaf surface of Senecio jacobaea L. Phytochemistry 64:1223–1228.PubMedCrossRefGoogle Scholar
  49. Wang, Z. Y. and He, J. X. 2004. Brassinosteroid signal transduction—choices of signals and receptors. Trends Plant Sci. 9:91–96.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Delphine Calas
    • 1
  • Andrée Berthier
    • 1
  • Frédéric Marion-Poll
    • 1
  1. 1.UMR 1272 Physiologie de l’Insecte: Signalisation et CommunicationINRA—UPMC—AgroParisTechVersailles cedexFrance

Personalised recommendations