Journal of Chemical Ecology

, Volume 33, Issue 5, pp 971–984 | Cite as

Chemical Changes Associated with the Invasion of a Melipona scutellaris Colony by Melipona rufiventris Workers

  • Adriana Pianaro
  • Adriana Flach
  • Eda F. L. R. A. Patricio
  • Paulo Nogueira-Neto
  • Anita J. Marsaioli


Wax constituents produced by worker bees and the chemistry of the nest batumen (mixture of wax, mud, and floral materials) in a Melipona scutellaris colony changed when it was invaded by Melipona rufiventris workers. Gas chromatography/mass spectrometry analyses showed that after invasion, the M. scutellaris workers of the invaded colony produced waxes with higher relative abundance of triacontanyl acetate and decreased the amounts of n-alkanes and n-9-alkenes. On the other hand, waxes from M. rufiventris workers displayed few changes. The change in the composition of the M. scutellaris waxes chemically differentiates that species from the M. rufiventris invader workers. Comparative analyses of batumens samples from pure and invaded colonies revealed greater amounts of terpenes and phenolic derivatives in the batumen from the invaded colony. This is the first report on the chemical characterization of batumens from stingless bees.


Meliponinae Melipona rufiventris Melipona scutellaris Wax Batumen Triacontanyl acetate Alkenes Alkanes Apidae 



We thank Fundação de Amparo a Pesquisa do Estado de São Paulo for grants, which made the present contribution possible (Adriana Flach, Proc. no. 02/07029-0, and Adriana Pianaro, Proc. no. 03/09358-3). We also acknowledge Prof. Carol H. Collins (IQ/UNICAMP) for critically revising the manuscript.


  1. Adams, R. P. 1995. Identification of Essential Oil by Gas Chromatography/Mass Spectroscopy. Allured Publishing, Illinois, p. 469.Google Scholar
  2. Aguilar-Ortigoza, C. J.; Sosa, V., and Aguilar-Ortigoza, M. 2003. Toxic phenols in various Anacardiaceae species. Econ. Bot. 57:354–364.CrossRefGoogle Scholar
  3. Ashes, J. R., Haken, J. K., and Mills, S. C. 1980. Gas chromatography of esters-XII. Interrelationship of equivalent chain length (ECL) and retention index values of fatty esters. J. Chromatogr. 187:297–305.CrossRefGoogle Scholar
  4. Beekman, M. 2004. Is her majesty at home? Trends Ecol. Evol. 19:505–506.PubMedCrossRefGoogle Scholar
  5. Billen, J. 2006. Signal variety and communication in social insects. Proc. Neth. Entomol. Soc. Meet. 17:9–25.Google Scholar
  6. Bonavita-Cougourdan, A., Clément, J. L., and Lange, C. 1987. Nestmate recognition: the role of cuticular hydrocarbons in the ant Camponotus vagus Scop. J. Entomol. Sci. 22:1–10.Google Scholar
  7. Buser, H. R., Arn, H., Guerin, P., and Rauscher, S. 1983. Determination of double position in mono-unsaturated acetates by mass spectrometry of dimethyl disulfite adducts. Anal. Chem. 55:818–822.CrossRefGoogle Scholar
  8. Cruz-López, L., Patricio, E. F. L. R. A., and Morgan, E. D. 2001. Secretions of bees: the Dufour gland of Nannotrigona testaceicornis. J. Chem. Ecol. 27:69–79.PubMedCrossRefGoogle Scholar
  9. Cruz-López, L., Patricio, E. F. L. R. A., Maile, R., and Morgan, E. D. 2002. Secretions of stingless bees: cephalic secretions of two Frieseomelitta species. J. Insect Physiol. 48:453–458.PubMedCrossRefGoogle Scholar
  10. Flach, A. 2005. Ecologia Química de Maxillariinae, Spathodea campanulata e Meliponiinae. Tese de doutorado, Universidade Estadual de Campinas, Brazil, p. 178.Google Scholar
  11. Gamboa, G. J., Reeve, H. K., and Holmes, W. G. 1991. Conceptual issues and methodology in kin-recognition research: a critical discussion. Ethology 88:109–127.CrossRefGoogle Scholar
  12. Howard, R. W. and Baker, J. E. 2003. Morphology and chemistry of Dufour glands in four ectoparasitoids: Cephalonomia tarsalis, C. waterstoni (Hymenoptera: Bethylidae), Anisopteromalus calandrae, and Pteromalus cerealellae (Hymenoptera: Pteromalidae). Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 135:153–167.PubMedCrossRefGoogle Scholar
  13. Michener, C. D. 2000. The Bees of the World. The John Hopkins University Press, London, p. 913.Google Scholar
  14. Morel, L. and Blum, M. S. 1988. Nestmate recognition in Camponotus floridanus worker ants: are sisters or nestmate recognized? Anim. Behav. 36:718–725.CrossRefGoogle Scholar
  15. Nascimento, V. A., Matusita, S. H., and Kerr, W. E. 2000. Evidence of hybridization between two species of Melipona bees. Genet. Mol. Biol. 23:79–81.CrossRefGoogle Scholar
  16. Nogueira-Neto, P. 1997. Vida e Criação de Abelhas Indígenas Sem Ferrão. Editora Nogueirapis, São Paulo, p. 446.Google Scholar
  17. Nowbahari, E., Lenoir, A., Clément, J. L., Lange, C., Bagnères, A. G., and Jouilie, C. 1990. Individual, geographical and experimental variation of cuticular hydrocarbons of the ant Cataglyphis cursor (Hymenoptera: Formicidae): their use in nest and subspecies recognition. Biochem. Syst. Ecol. 18:63–73.CrossRefGoogle Scholar
  18. Obin, M. S. 1986. Nestmate recognition cues in laboratory and field colonies of Solenopsis invicta Buren (Hymenoptera: Formicidae): effect of environment and the role of cuticular hydrocarbons. J. Chem. Ecol. 12:1965–1975.CrossRefGoogle Scholar
  19. Patricio, E. F. L. R. A., Cruz-López, L., Maile, R., and Morgan, E. D. 2003. Secretions of stingless bees: the Dufour glands of some Frieseomelitta species (Apidae: Meliponinae). Apidologie 34:359–365.CrossRefGoogle Scholar
  20. Perrin, D. D., Armarego, W. L. F., and Perrin, D. R. 1980. Purification of Laboratory Chemicals, 2nd ed. Pergamon Press, Oxford, p. 557.Google Scholar
  21. Pompeu, M. S. and Silveira, F. A. 2005. Reaction of Melipona rufiventris Lepeletier to citral and against an attack by the cleptobiotic bee Lestrimelitta limao (Smith) (Hymenoptera: Apidae: Meliponina). Braz. J. Biol. 65:189–191.PubMedCrossRefGoogle Scholar
  22. Roubik, D. W. 1989. Ecology and Natural History of Tropical Bees. Cambridge University Press, New York, p. 514.Google Scholar
  23. Simmons, L. G., Alcock, J., and Reeder, A. 2003. The role of cuticular hydrocarbons in male attraction and repulsion by female Dawson’s burrowing bee, Amegilla dawsoni. Anim. Behav. 66:677–685.CrossRefGoogle Scholar
  24. Singer, T. L. 1998. Roles of hydrocarbons in the recognition systems of insects. Am. Zool. 38:394–405.Google Scholar
  25. Van Den Dool, H. and Kratz, P. D. 1963. A generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography. J. Chromatogr. 11:463–471.CrossRefGoogle Scholar
  26. Vincenti, M., Guglielmetti, G., Cassani, G., and Tonini, C. 1987. Determination of double position in diunsaturated compounds by mass spectrometry of dimethyl disulfite derivatives. Anal. Chem. 59:694–699.CrossRefGoogle Scholar
  27. Winston, M. L. and Michener, C. D. 1977. Dual origin of highly social behavior among bees. Proc. Natl. Acad. Sci. U. S. A. 74:1135–1137.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Adriana Pianaro
    • 1
  • Adriana Flach
    • 1
  • Eda F. L. R. A. Patricio
    • 2
  • Paulo Nogueira-Neto
    • 2
  • Anita J. Marsaioli
    • 1
  1. 1.Instituto de QuímicaUniversidade Estadual de CampinasCampinasBrazil
  2. 2.Laboratório de Abelhas, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil

Personalised recommendations