Journal of Chemical Ecology

, Volume 33, Issue 3, pp 603–612 | Cite as

Mice Respond Differently to Urine and Its Major Volatile Constituents from Male and Female Ferrets

  • Jian-Xu Zhang
  • Lixing Sun
  • Milos Novotny


Our previous chemical investigation showed that the concentrations of urinary volatiles from males were much higher than those from females in the ferret (Mustela furo). The current study was designed to examine the behavioral significance and ecological relevance of this difference for one of the main prey of the ferret, the house mouse (Mus musculus). Our data showed that male mice displayed no difference in their response to raw male and female ferret urine. However, they showed significantly less response to female mouse urine mixed with ferret urine than to pure female mouse urine, and to female mouse urine mixed with male ferret urine than to female mouse urine mixed with female ferret urine. Furthermore, high levels of the three major volatiles (quinoline, 2,5-dimethylpyrazine, and 4-hepatanone) in male ferret urine were as effective as raw male ferret urine was in inhibiting the response of male mice. We discuss the ecological and behavioral significance of these findings in terms of chemical mimicry and cognitive feature extraction of predator odors in mice.


Mouse Ferret Urine Odor Pheromone Quinoline 2,5-Dimethylpyrazine 4-Heptanone Mimicry Predator Prey 



We are grateful to Dr. Janne Sundell for valuable comments on our earlier draft. We are grateful to Drs. Sarah K. Woodley and Michael J. Baum who provided us with ferret urine. This research was supported by grants [No. DC 24180 to M.V. N] from the National Institute of Deafness and Other Communication Disorders, National Institute of Health (NIH), and US Department of Health and Human Services. The manuscript preparation and data processing were partially supported by the CAS Innovative Research International Partnership Project (CXTDS2005-4).


  1. Andreolini, F., Jemiolo, B., and Novotny, M. 1987. Dynamics of excretion of urinary chemosignals in the house mouse (Mus musculus) during the natural estrous cycle. Experientia 45:998–1002.CrossRefGoogle Scholar
  2. Apfelbach, R., Blanchard, C. D., Blanchard, R. J., Hayes, R. A., and McGregor, I. S. 2005. The effects of predator odors in mammalian prey species: A review of field and laboratory studies. Neurosci. Biobehav. Rev. 29:1123–1144.PubMedCrossRefGoogle Scholar
  3. Bramley, G. N. and Joseph, R. W. 2001. Laboratory and field evaluation of predator odors as repellents for kiore (Rattus exulans) and ship rats (R. rattus). J. Chem.Ecol. 27:1029–1047.PubMedCrossRefGoogle Scholar
  4. Brinck, C., Erlinge, S., and Sandell, M. 1983. Anal sac secretion in Mustelids: A comparison. J. Chem. Ecol. 9:727–745.CrossRefGoogle Scholar
  5. Buesching, C. D., Waterhouse, J. S., and Macdonald, D. W. 2002a. Gaschromatographic analyses of the subcaudal gland secretion of the European badger (Meles meles). Part I: Chemical differences related to individual parameters. J. Chem. Ecol. 28:41–56.PubMedCrossRefGoogle Scholar
  6. Buesching, C. D., Waterhouse, J. S., and Macdonald, D. W. 2002b. Gaschromatographic analyses of the subcaudal gland secretion of the European badger (Meles meles). Part II: Time-related variation in the individual-specific composition. J. Chem. Ecol. 28:57–69.PubMedCrossRefGoogle Scholar
  7. Burwash, M. D., Tobin, M. E., Woolhouse, A. D., and Sullivan, T. P. 1998. Field testing synthetic predator odors for roof rats (R. rattus) in Hawaiian macadamia nut orchards. J. Chem Ecol. 24:603–630.CrossRefGoogle Scholar
  8. Cloe, A. L., Woodley, S. K., Waters, P., Zhou, H., and Baum, M. J. 2004. Contribution of anal scent gland and urinary odors to mate recognition in the ferret. Physiol. Behav. 82:871–875.PubMedCrossRefGoogle Scholar
  9. Dettner, K. and Liepert, C. 1994. Chemical mimicry and camouflage. Annu. Rev. Ento. 39:129–154.CrossRefGoogle Scholar
  10. Eisner, T., Morgan, R. C., Attygalle, A. B., Smedley, S. R., Herath, K. B. and Meinwald, J. 1997. Defensive production of quinoline by a phasmid insect (Oreophoetes peruana). J. Exp. Biol. 200:2493–2500.PubMedGoogle Scholar
  11. Epple, G., Mason, J., Nolte, D. and Campbell, D. 1993. Effects of predator odors on feeding in the mountain beaver (Aplodontia rufa). J. Mammal. 74:715–722.CrossRefGoogle Scholar
  12. Epple, G., Mason, J. R., Aronov, E., Nolte, D. L., Hartz, R. A., Kaloostian, R., Campbell, D. and Smith, A. B. 1995. Feeding responses to predator-based repellents in the mountain beaver (Aplodontia rufa). Ecol. Appl. 5:1163–1170.CrossRefGoogle Scholar
  13. Jemiolo, B. and Novotny, M. 1993. Long-term effect of a urinary chemosignal on reproductive fitness in female mice. Biol. Reprod. 48:926–929.PubMedCrossRefGoogle Scholar
  14. Jemiolo, B., Andreolini, F., Wiesler, D. and Novotny, M. 1987. Variations in the mouse (Mus musculus) urinary volatiles during different periods of pregnancy and lactation. J. Chem. Ecol. 13:1941–1956.CrossRefGoogle Scholar
  15. Lai, S-C, Vasilieva, N. Y. and Johnston, R. E. 1996. Odors providing sexual information in Dijungarian hamsters: evidence for an across-odor code. Horm. Behav. 30:26–36.PubMedCrossRefGoogle Scholar
  16. Mappes, T., Koskela, E. and Ylönen, H. 1998. Breeding suppression in voles under predation risk of small mustelids: laboratory or methodological artifact? Oikos 82:365–369.CrossRefGoogle Scholar
  17. Müller-Schwarze, D. 1995. Chemical repellents for beaver: New leads, pp. 479–484, in R. Apfelbach, D. Müller-Schwarze, K. Reutter, and E. Weiler (eds.). Advances in Biosciences, Vol 93: Chemical Signals in Vertebrates 7. Elsevier Science Ltd., Great Britain.Google Scholar
  18. Mason, J. R., Epple, G. and Nolte, D. L. 1994. Semiochemicals and improvements in rodent control. pp. 327–346, in B. E. Galef, M. Mainardi, and P. Valsecchi (eds.). Behavioral Aspects of Feeding: Basic and Applied Research in Mammals. Harwood Academic, Chur, Switzerland.Google Scholar
  19. Nolte, D. L, Mason, J. R. and Clark, L. 1993. Avoidance of bird repellents by mice (Mus musculus). J. Chem. Ecol. 19:427–432.CrossRefGoogle Scholar
  20. Novotny, M., Jemiolo, B., Harvey, S., Wiesler, D. and Marchlewska-Koj, A. 1986. Adrenal-mediated endogenous metabolites inhibit puberty in female mice. Science 231:722–725.PubMedCrossRefGoogle Scholar
  21. Pasteur, G. 1982. A classification review of mimicry systems. Annu. Rev. Ecol. Syst. 13:169–199.CrossRefGoogle Scholar
  22. Preti, G., Muetterties, E. L., Furman, J. M., Kennelly, J. J. and Johns, B. E. 1976. Volatile constitutes of dog (Canis familiaris) and coyote (C. latrans) anal sacs. J. Chem. Ecol. 2:177–186.CrossRefGoogle Scholar
  23. Raymer, J. 1984. Investigations into the chemical nature of chemo-olfactory communication in the wolf (Canis lupus). PhD dissertation). Indiana University, Bloomington.Google Scholar
  24. Raymer, J., Wiesler, D., Novotny, M., Asa, C., Seal, U. S., and Mech, L. D. 1985. Chemical investigations of wolf (Canis lupus) anal sac secretion in relation to breeding season. J. Chem. Ecol. 11:593–608.CrossRefGoogle Scholar
  25. Roberts, S. C., Gosling, L. M., Thornton, E. A. and McClung, J. 2001. Scent-marking by male mice under the risk of predation. Behav. Ecol. 12:698–705.CrossRefGoogle Scholar
  26. Schildknecht, H. and Birkner, C. 1983. Struktur und Wirkung der Musteliden-Ökomone, III: Analyse der Analbeutelsekrete Mitteleuropa ischer Musteliden. Chemiker-Zeitung 107:267–270 (in German).Google Scholar
  27. Schildknecht, H., Stenuf, G. and Krauss, D. 1986. Structure and action of mammalian ecomones. VI. Behavior-active chemical signals from the urine of the ferret (Mustela putorius furo). Chemiker-Zeitung 110:185–195 (in German).Google Scholar
  28. Schulte, B. A., Müller-Schwarze, D., Tang, R. and Webster, F. X. 1994. Beaver (Castor canadensis) responses to major phenolic and neutral compounds in castoreum. J. Chem. Ecol. 20:3063–3081.CrossRefGoogle Scholar
  29. Service, K. M., Brereton, R. G. and Harris, S. 2001. Analysis of badger urine volatiles using gas chromatography-mass spectrometry and pattern recognition techniques. Analyst 126:615–623.PubMedCrossRefGoogle Scholar
  30. Stoddart, M. 1980. The Ecology of Vertebrate Olfaction, Chapman & Hall Ltd, London.Google Scholar
  31. Sullivan, T., Crump, D. and Sullivan, D. 1988a. Use of predator odors as repellents to reduce feeding damage by herbivores. 3. Montane and meadow voles (Microtus montanus and M. pennsylvannicus). J. Chem. Ecol. 14:363–378.CrossRefGoogle Scholar
  32. Sullivan, T., Crump, D. and Sullivan, D. 1988b. Use of predator odors as repellents to reduce feeding damage by herbivores. 4. Northern pocket gophers (Thomomys talipoides). J. Chem. Ecol. 14:379–390.CrossRefGoogle Scholar
  33. Vernfset-Maury, E., Polak, E. H. and Demael, A. 1984. Structure-activity relationship of stress-inducing odorants in the rat. J. Chem. Ecol. 10:1007–1019.CrossRefGoogle Scholar
  34. Zhang, J., Zhang, Z. and Wang, Z. 2001. Males’ olfactory discrimination of receptive state of female in rat-like hamsters (Cricetulus triton), pp. 385–390, in A. Marchlewska-Koj, J. J. Lepri, and D. Müller-Schwarze (eds.). Chemical Signals in Vertebrates 9, Kluwer Academic/Plenum Publishers, New York.Google Scholar
  35. Zhang, J., Ni, J., Ren, X., Sun, L., Zhang, Z. and Wang, Z. 2003. Possible coding for recognitions of sexes, individuals and species in anal gland volatiles of Mustela eversmanni and M. sibirica. Chem. Senses 28:371–378.CrossRefGoogle Scholar
  36. Zhang, J., Soini, H., Bruce, K., Wiesler, D., Woodley, S., Baum, M. and Novotny M. 2005. Putative chemosignals of the ferret (Mustela furo) associated with individual and gender recognition. Chem. Senses 30:727–737.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.State Key Laboratory of Integrated Management of Pest Insects and Rodents in AgricultureInstitute of Zoology, Chinese Academy of SciencesBeijingChina
  2. 2.The Institute for Pheromone Research, Department of ChemistryIndiana UniversityBloomingtonUSA
  3. 3.Department of Biological SciencesCentral Washington UniversityEllensburgUSA
  4. 4.Institute of Zoology, Chinese Academy of SciencesBeijingChina

Personalised recommendations