Journal of Chemical Ecology

, Volume 33, Issue 1, pp 167–181 | Cite as

Juvenile Hormone III Influences Task-Specific Cuticular Hydrocarbon Profile Changes in the Ant Myrmicaria eumenoides



We investigated the influence of juvenile hormones (JH) on the composition of cuticular hydrocarbons (CHCs) and the division of labor in colonies of the African ant Myrmicaria eumenoides. CHCs have long been implicated in nestmate recognition in social insect colonies. In M. eumenoides, the CHC profiles also vary with the task performed from brood-tender-type to forager type. The endocrine factors regulating the task allocation as well as the intracolonial recognition cues are not well understood, but JHs are prime candidates. Only JH III was identified in the hemolymph of M. eumenoides workers. Foragers had significantly higher JH III titers than brood tenders. The application of exogenous JH III and a JH analogue (methoprene) to M. eumenoides workers did not result in an observable acceleration of task change in our study. However, longevity of the focus workers, and thus the observational period, was reduced by the applications. Changes from a brood-tender-type to a forager-type CHC profile were accelerated by the application of JH III and methoprene, resulting in brood-tending workers that displayed forager-type CHC profiles. We present the first data supporting that recognition cues of an eusocial Hymenopteran are influenced by JH III, which could thus play a major role in the regulation of the dynamic nature of social insect colonies. JH III is connected to at least two key processes: the acceleration of CHC changes and the more long-term modulation of task shifting. Moreover, this indicates that changes in CHC recognition cues do not trigger task allocation in social insect colonies.


Cuticular hydrocarbons Division of labor Juvenile hormone Social insects Task 



We thank Antje Halwas for help and support during the investigations, and we are grateful to Konrad Fiedler for advice regarding statistical problems. This study was supported by the Deutsche Forschungsgemeinschaft as part of the Graduiertenkolleg 678 at the University of Bayreuth.


  1. Arthur, C. L. and Pawliszyn, J. 1990. Solid-phase microextraction with thermal desorption using fused-silica optical fibers. Anal. Chem. 62:2145–2148.CrossRefGoogle Scholar
  2. Bloch, G., Borst, D. W., Huang, Z. Y., Robinson, G. E., and Hefetz, A. 2000. Juvenile hormone titers, juvenile hormone biosynthesis, ovarian development and social environment in Bombus terrestris. J. Insect Physiol. 46:47–57.PubMedCrossRefGoogle Scholar
  3. Bloch, G., Wheeler, D. E., and Robinson, G. E. 2002. Endocrine influences on the organisation of insect societies, pp. 195–236, in D. Pfaff (ed.). Hormones, Brain and Behavior, Vol. 3. Academic Press, San Diego, USA.Google Scholar
  4. Blomquist, G. J., Tillmann, J. A., Mpuru, S., and Seybold, S. J. 1998. The cuticle and cuticular hydrocarbons of insects: Structure, function and biochemistry, pp. 34–54, in R. K. Vander Meer, M. Breed, M. Winston, and C. Espelie (eds.). Pheromone Communication in Social Insects. Westview Press, Boulder, CO, USA.Google Scholar
  5. Bonavita-Cougourdan, A., Clement, J. L., and Lange, C. 1993. Functional subcaste discrimination (foragers and brood-tenders) in the ant Camponotus vagus Scop.: Polymorphism of cuticular hydrocarbon patterns. J. Chem. Ecol. 19:1461–1477.CrossRefGoogle Scholar
  6. Bortolotti, L., Duchateau, M. J., and Sbrenna, G. 2001. Effect of juvenile hormone on caste determination and colony processes in the bumblebee Bombus terrestris. Entomol. Exp. Appl. 101:143–158.CrossRefGoogle Scholar
  7. Bradshaw, J. W. S. and Howse, P. E. 1984. Sociochemicals of ants, pp. 429–473, in W. J. Bell and R. T. Carde (eds.). Chemical Ecology of Insects. Chapman and Hall, London, UK.Google Scholar
  8. Brent, C. S., Schal, C., and Vargo, E. L. 2005. Endocrine changes in maturing primary queens of Zootermopsis angusticollis. J. Insect Physiol. 51:1200–1209.PubMedCrossRefGoogle Scholar
  9. Cameron, S. A. and Robinson, G. E. 1990. Juvenile hormone does not affect division of labor in bumble bee colonies (Hymenoptera: Apidae). Ann. Entomol. Soc. Am. 83:626–631.Google Scholar
  10. Cuvillier-Hot, V., Cobb, W., Malosse, C., and Peeters, C. 2001. Sex, age and ovarian activity effect cuticular hydrocarbons in Diacamma ceylonense, a queenless ant. J. Insect Physiol. 47:485–493.PubMedCrossRefGoogle Scholar
  11. Dahbi, A. and Lenoir, A. 1998. Queen colony odor in the multiple nest ant species Cataglyphis iberica (Hymenoptera; Formicidae). Insectes Soc. 45:301–313.CrossRefGoogle Scholar
  12. Dietemann, V., Peeters, C., Liebig, J., Thivet, V., and Hölldobler, B. 2003. Cuticular hydrocarbons mediate discrimination of reproductives and nonreproductives in the ant Myrmecia gulosa. Proc. Natl. Acad. Sci. USA 100:10341–10346.PubMedCrossRefGoogle Scholar
  13. Fluri, P., Lüscher, M., Wille, H., and Gerig, L. 1982. Changes in weight of the pharyngeal gland and hemolymph titers of juvenile-hormone, protein and vitellogenin in worker honey bees. J. Insect Physiol. 28:61–68.CrossRefGoogle Scholar
  14. Francis, B. R., Blanton, W. E., Littlefield, J. L., and Nunamaker, R. A. 1989. Hydrocarbons of the cuticle and hemolymph of the adult honey bee (Hymenoptera: Apidae). Ann. Entomol. Soc. Am. 82:486–494.Google Scholar
  15. Gäde, G., Hoffmann, K. H., and Spring, J. H. 1997. Hormonal regulation in insects: facts, gaps, and future directions. Physiol. Rev. 77:963–1032.PubMedGoogle Scholar
  16. Giray, T. and Robinson, G. E. 1994. Effects of intracolony variability in behavioral-development on plasticity of division-of-labor in honey-bee colonies. Behav. Ecol. Sociobiol. 35:13–20.Google Scholar
  17. Giray, T., Huang, Z. Y., Guzman-Novoa, E., and Robinson G. E. 1999. Physiological correlates of genetic variation for rate of behavioral development in the honeybee, Apis mellifera. Behav. Ecol. Sociobiol. 47:17–28.CrossRefGoogle Scholar
  18. Giray, T., Giovanetti, M., and West-Eberhard, M. J. 2005. Juvenile hormone, reproduction, and worker behavior in the neotropical social wasp Polistes canadensis. Proc. Natl. Acad. Sci. USA 102:3330–3335.PubMedCrossRefGoogle Scholar
  19. Gordon, D. M. and Mehdiabadi, N. J. 1999. Encounter rate and task allocation in harvester ants. Behav. Ecol. Sociobiol. 45:370–377.CrossRefGoogle Scholar
  20. Greene, M. J. and Gordon, D. M. 2003. Social insects—cuticular hydrocarbons inform task decisions. Nature 423:32–32.PubMedCrossRefGoogle Scholar
  21. Hadley, N. F. 1994. Water Relations of Terrestrial Arthropods. Academic Press, San Diego, USA.Google Scholar
  22. Hadley, N. F. and Schultz, T. D. 1987. Water loss in three species of tiger beetles (Cicindela): Correlations with epicuticular hydrocarbons. J. Insect Physiol. 33:677–682.CrossRefGoogle Scholar
  23. Hartfelder, K. and Emlen, D. J. 2005. Endocrine Control of Insect Polyphenism, pp. 651–703, in L. I. Gilbert, K. Iatrou, and S. Gill (eds.) Comprehensive Insect Physiology, Biochemistry, Pharmacology, and Molecular Biology, Vol. 3. Elsevier, London, UK.Google Scholar
  24. Hölldobler, B. and Wilson, E. O. 1990. The Ants. Harvard University Press, Cambridge, MA, USA.Google Scholar
  25. Howard, R. W. and Blomquist, G. J. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50:371–393.PubMedCrossRefGoogle Scholar
  26. Huang, Z. Y. and Robinson, G. E. 1995. Seasonal changes in juvenile-hormone titers and rates of biosynthesis in honey-bees. J. Comp. Physiol. B 165:18–28.PubMedCrossRefGoogle Scholar
  27. Huang, Z. Y., Robinson, G. E., Tobe, S. S., Yagi, K. J., Strambi, C., Strambi, A., and Stay, B. 1991. Hormonal-regulation of behavioral-development in the honey-bee is based on changes in the rate of juvenile-hormone biosynthesis. J. Insect Physiol. 37:733–741.CrossRefGoogle Scholar
  28. Huang, Z. Y., Robinson, G. E., and Borst, D. W. 1994. Physiological correlates of division-of-labor among similarly aged honeybees. J. Comp. Physiol. A 174:731–739.PubMedCrossRefGoogle Scholar
  29. Huang, Z. Y., Kuang, H. O., and Qin, J. 2001. Juvenile hormone and division of labor in Apis cerana. Proc. 7th IBRA Conference on Tropical Bees and the 5th AAA Conference. Internal. Bec. Rec. Assoc. Cardiff, UK.Google Scholar
  30. Johnston, A. B. and Wilson, E. O. 1985. Correlates of variation in the major minor ratio of the ant Pheidole dentata (Hymenoptera, Formicidae). Ann. Entomol. Soc. Am. 78:8–11.Google Scholar
  31. Jutsum, A. R., Saunders, T. S., and Cherrett, J. M. 1979. Intraspecific aggression in the leaf-cutting ant Acromyrmex octospinosus. Anim. Behav. 27:839–844.CrossRefGoogle Scholar
  32. Kaib, M., Eisermann, B., Schoeters, E., Billen, J., Franke, S., and Francke, W. 2000. Task-related variation of postpharyngeal and cuticular hydrocarbon compositions in the ant Myrmicaria eumenoides. J. Comp. Physiol. A 186:939–948.PubMedCrossRefGoogle Scholar
  33. Kaib, M., Jmhasly, P., Wilfert, L., Durka, W., Franke, S., Francke, W., Leuthold, R. H., and Brandl, R. 2004. Cuticular hydrocarbons and aggression in the termite Macrotermes subhyalinus. J. Chem. Ecol. 30:365–385.PubMedCrossRefGoogle Scholar
  34. Kuhr, R. J. and Cleere, J. S. 1973. Toxic effects of synthetic juvenile hormones on several aphid species. J. Econ. Entomol. 66:1019–1022.Google Scholar
  35. Lahav, S., Soroker, V., Hefetz, A., and Vander Meer, R. K. 1999. Direct behavioral evidence for hydrocarbons as ant recognition discriminators. Naturwissenschaften 86:246–249.CrossRefGoogle Scholar
  36. Liang, D. and Silverman, J. 2000. ‘You are what you eat’: Diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften 87:412–416.PubMedCrossRefGoogle Scholar
  37. Liebig, J., Peeters, C., Oldham, N., Markstädter, C., and Hölldobler, B. 2000. Are variations in cuticular hydrocarbons of queens and workers a reliable signal of fertility in the ant Harpegnathos saltator? Proc. Natl. Acad. Sci. USA 97:4124–4131.PubMedCrossRefGoogle Scholar
  38. Lucas, C., Pho, D. B., Fresneau, D., and Jallon, J. M. 2004. Hydrocarbon circulation and colonial signature in Pachycondyla villosa. J. Insect Physiol. 50:595–607.PubMedCrossRefGoogle Scholar
  39. Lucas, C., Pho, D. B., Jallon, J. M., and Fresneau, D. 2005. Role of cuticular hydrocarbons in the chemical recognition between ant species in the Pachycondyla villosa species complex. J. Insect Physiol. 51:1148–1157.PubMedCrossRefGoogle Scholar
  40. Meola, R. W., Dean, S. R., and Bhaskaran, G. 2001. Effects of juvenile hormone on eggs and adults of the cat flea (Siphonaptera: Pulicidae). J. Med. Entomol. 38:85–92.PubMedCrossRefGoogle Scholar
  41. Monnin, T., Malosse, C., and Peeters C. 1998. Solid-phase microextraction and cuticular hydrocarbon differences related to reproductive activity in the queenless ant Dinoponera quadriceps. J. Chem. Ecol. 24:473–490.CrossRefGoogle Scholar
  42. Nei, M. 1972. Genetic distance between populations. Am. Nat. 106:283–291.CrossRefGoogle Scholar
  43. Nielsen, J., Boomma, J. J., Oldham, N. J., Peterson, H. C., and Morgan, E. D. 1999. Colony-level and season-specific variation in cuticular hydrocarbon profiles of individual workers in the ant Formica truncorum. Insectes Soc. 46:58–65.CrossRefGoogle Scholar
  44. Nowbahari, E., Lenoir, A., Clement, J. L., Lange, C., Bagneres, A. G., and Joulie, C. 1990. Individual, geographical and experimental variation of cuticular hydrocarbons of the ant Cataglyphis cursor (Hymenoptera: Formicidae): Their use in nest and subspecies recognition. Biochem. Syst. Ecol. 18:63–73.CrossRefGoogle Scholar
  45. O’Donnell, S. and Jeanne, R. S. 1998. Methoprene accelerates age polyethism in workers of a social wasp (Polybia occidentalis). Physiol. Entomol. 18:189–194.Google Scholar
  46. Orth, A. P., Tauchman, S. J., Doll, S. C., and Goodman, W. G. 2003. Embryonic expression of juvenile hormone binding protein and its relationship to the toxic effects of juvenile hormone in Manduca sexta. Insect Biochem. Mol. Biol. 33:1275–1284.PubMedCrossRefGoogle Scholar
  47. Otto, D. 1962. Die Roten Waldameisen. Wittenberg Lutherstadt: Ziemsen, Germany.Google Scholar
  48. Rembold, H., Czoppelt, C., Grüne, M., Lackner, B., and Pfeffer, J. 1992. Juvenile hormone titers during honey bee embryogenesis and metamorphosis, pp. 37–43, in B. Mauchamp, F. Couillard, and J. C. Baehr (eds.). Insect Juvenile Hormone Research. INRA, Paris.Google Scholar
  49. Robinson, G. E. 1985. Effects of a juvenile-hormone analog on honey bee foraging behaviour and alarm pheromone production. J. Insect Physiol. 31:277–282.CrossRefGoogle Scholar
  50. Robinson, G. E. and Vargo, E. L. 1997. Juvenile hormone in adult eusocial Hymenoptera: Gonadotropin and behavioral pacemaker. Arch. Insect Biochem. 35:559–583.CrossRefGoogle Scholar
  51. Robinson, G. E., Page, R. E., Strambi, A., and Strambi, C. 1989. Hormonal and genetic control of behavioral integration in honeybee colonies. Science 246:109–111.CrossRefPubMedGoogle Scholar
  52. Sasagawa, H., Sasaki, M., and Okada, I. 1989. Hormonal control of the division of labor in adult honeybees (Apis mellifera L.). 1. Effect of methoprene on corpora allata and hypopharyngeal gland, and its alpha-glucosidase activity. Appl. Entomol. Zool. 24:66–77.Google Scholar
  53. Schal, C., Gu, X., Burns, E. L., and Blomquist, G. J. 1994. Patterns of biosynthesis and accumulation of hydrocarbons and contact sex pheromone in the female German cockroach Blattella germanica. Arch. Insect Biochem. Physiol. 25:375–391.PubMedCrossRefGoogle Scholar
  54. Schal, C., Sevala, V., Young, H. P., and Bachmann, J. A. S. 1998. Sites of synthesis and transport pathways of insect hydrocarbons: Cuticle and ovary as target tissues. Am. Zool. 38:382–393.Google Scholar
  55. Schal, C., Fan, Y., and Blomquist, G. J. 2003. Regulation of pheromone biosynthesis, transport and emission in cockroaches, pp. 283–322, in G. J. Blomquist and R. Vogt (eds.). Insect Pheromone Biochemistry and Molecular Biology: The Biosynthesis and Detection of Pheromones and Plant Volatiles. Elsevier, Amsterdam, The Netherlands.Google Scholar
  56. Schulz, D. J., Sullivan, J. P., and Robinson, G. E. 2002. Juvenile hormone and octopamine in the regulation of division of labor in honeybee colonies. Horm. Behav. 42:222–231.PubMedCrossRefGoogle Scholar
  57. Searle, S., Casella, G., and Mcculloch, C. 1992. Variance Components. Wiley, New York, USA.Google Scholar
  58. Sevala, V. L., Bachmann, J. A. S., and Schal, C. 1997. Lipophorin: a haemolymph juvenile hormone binding protein in the German cockroach Blattella germanica. Insect Biochem. Mol. Biol. 27:663–670.CrossRefGoogle Scholar
  59. Sommer, K., Hölldobler, B., and Rembold, H. 1993. Behavioral and physiological aspects of reproductive control in a Diacamma species from Malaysia (Formicidae, Ponerinae). Ethology 94:162–170.CrossRefGoogle Scholar
  60. Stevens, S. and Hofmeyr, J. H. S. 1993. Effects of ethanol, octanoic and decanoic acids on fermentation and the passive influx of protons through the plasma membrane of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 38:656–663.CrossRefGoogle Scholar
  61. Sullivan, J. P., Jassim, O., Fahrbach, S. E., and Robinson, G. E. 2000. Juvenile hormone paces behavioral development in the adult worker honey bee. Horm. Behav. 37:1–14.PubMedCrossRefGoogle Scholar
  62. Thomas, M. L., Parry, L. P., Allan, R. A., and Elgar, M. E. 1999. Geographic affinity, cuticular hydrocarbons and colony recognition in the Australian meat ant Iridomyrmex purpureus. Naturwissenschaften 86:87–92.CrossRefGoogle Scholar
  63. Tillman, J. A., Holbrook, G. L., Dallara, P. L., Schal, C., Wood, D. L., Blomquist, G. J., and Seybold, S. J. 1998. Endocrine regulation of de novo aggregation pheromone biosynthesis in the pine engraver Ips pini (Say) (Coleoptera: Scolytidae). Insect Biochem. Mol. Biol. 28:705–715.CrossRefGoogle Scholar
  64. Tillman, J. A., Seybold, S. J., Jurenka, R. A., and Blomquist, G. J. 1999. Insect pheromones—an overview of biosynthesis and endocrine regulation. Insect Biochem. Mol. Biol. 29:481–514.PubMedCrossRefGoogle Scholar
  65. Tittiger, C., Barkawi, L. S., Bengoa, C. S., Blomquist, G. J., and Seybold, S. J. 2003. Structure and juvenile hormone-mediated regulation of the HMG-CoA reductase gene from the Jeffrey pine beetle, Dendroctonus jeffrey. Mol. Cell. Endocrinol. 199:11–21.PubMedCrossRefGoogle Scholar
  66. Wagner, D., Brown, M. J. F., Broun, P., Cuevas, W., Moses, L. E., Chao, D. L., and Gordon, D. M. 1998. Task-related differences in the cuticular hydrocarbon composition of harvester ants, Pogonomyrmex barbatus. J. Chem. Ecol. 24:2021–2037.CrossRefGoogle Scholar
  67. Wagner, D., Tissot, M., Cuevas, W., and Gordon, D. 2000. Harvester ants utilize cuticular hydrocarbons in nestmate recognition. J. Chem. Ecol. 26:2245–2257.CrossRefGoogle Scholar
  68. Wagner, D., Tissot, M., and Gordon, D. 2001. Task-related environment alters the cuticular hydrocarbon composition of harvester ants. J. Chem. Ecol. 27:1805–1819.PubMedCrossRefGoogle Scholar
  69. Westerlund, S. A. and Hoffmann, K. H. 2004. Rapid quantification of juvenile hormones and their metabolites in insect hemolymph by liquid chromatography-mass spectrometry (LC-MS). Anal. Bioanal. Chem. 379:540–543.PubMedCrossRefGoogle Scholar
  70. Wilson, E. O. 1971. The Insect Societies. Harvard University Press, Cambridge, MA, USA.Google Scholar
  71. Wilson, E. O. 1983. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). IV. Colony ontogeny of A. cephalotes. Behav. Ecol. Sociobiol. 14:55–60.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Animal PhysiologyUniversity of BayreuthBayreuthGermany
  2. 2.Department of Animal Ecology IUniversity of BayreuthBayreuthGermany

Personalised recommendations