Advertisement

Journal of Chemical Ecology

, Volume 32, Issue 5, pp 929–942 | Cite as

Analysis of the Volatiles Emitted by Whole Flowers and Isolated Flower Organs of the Carob Tree Using HS-SPME-GC/MS

  • Luísa Custódio
  • Hugo Serra
  • José Manuel F. Nogueira
  • Sandra Gonçalves
  • Anabela Romano
Article

Abstract

The volatiles emitted by fresh whole flowers and isolated flower organs of male, female, and hermaphrodite carob trees (Ceratonia siliqua L.; Leguminosae) were analyzed by headspace solid-phase microextraction followed by capillary gas chromatography and mass spectrometry. The headspace of carob flowers is mainly constituted of high amounts of monoterpenes and sesquiterpenes, and more than 25 compounds were identified. The gender and cultivar affected both the qualitative profile and the relative abundances of the volatiles of whole flowers and isolated floral organs. Linalool and its derivatives (cis-linalool furan oxide, 2,2,6-trimethyl-3-keto-6-vinyltetrahydropyran, cis-linalool pyran oxide, and trans-linalool furan oxide), α-pinene, and α-farnesene were the dominant volatiles. Female flowers had a higher diversity of volatile compounds than males and hermaphrodites, but a lower abundance of the major ones. Similarly, the floral scent of female flowers of cv. Mulata had a higher content of volatiles but a lower abundance of the major ones, when compared to cv. Galhosa. In each of the three gender types of flowers, the nectary disks seemed to be the major source of volatiles.

Keywords

Capillary GC/MS Ceratonia siliqua L. Floral volatiles Flower gender Headspace solid-phase microextraction Leguminosae Nectary disk 

Notes

Acknowledgments

L. Custódio acknowledges a grant from Fundação para a Ciência e a Tecnologia (grant SFRH/BD/1274/2000).

References

  1. Adams, R. P. 2001. Identification of essential oil components by gas chromatography/quadrupole mass spectrometry. Allured Pub. Cor., USA.Google Scholar
  2. Arista, M., Ortiz, P., and Talavera, S. 1999. Apical pattern of fruit production in the racemes of Ceratonia siliqua (Leguminosae: Caesalpinioideae): role of pollinators. Am. J. Bot. 86:1708–1716.CrossRefPubMedGoogle Scholar
  3. Arroyo, J. 1988. Atributos florales y fenologia de la floración en matorrales del Sur de Espaňa. Lagascalia 15:43–48.Google Scholar
  4. Ashman, T.-L. 1994. Reproductive allocation in hermaphrodite and female plants of Sidalcea oregana ssp. spicata (Malvaceae) using four currencies. Am. J. Bot. 81:433–438.CrossRefGoogle Scholar
  5. Ashman, T.-L. 2000. Pollinator selectivity and its implications for the evolution of dioecy and sexual dimorphism. Ecology 81:2577–2591.CrossRefGoogle Scholar
  6. Ashman, T.-L. and Diefenderfer, C. 2001. Sex ratio represents a unique context for selection on attractive traits: consequences for the evolution of sexual dimorphism. Am. Nat. 157:334–347.CrossRefPubMedGoogle Scholar
  7. Ashman, T.-L., Shivitz, S., and Swetz, J. 2000. Understanding the basis of pollinator selectivity in sexually dimorphic Fragaria virginiana. Oikos 90:347–356.CrossRefGoogle Scholar
  8. Ashman, T.-L., Bradburn, M., Cole, D., Blaney, B., and Raguso R. 2005. The scent of a male: the role of floral volatiles in pollination of a gender dimorphic plant. Ecology 86:2099–2105.CrossRefGoogle Scholar
  9. Azuma, H., Toyota, M., and Asakawa, Y. 2001. Intraspecific variation of floral scent chemistry in Magnolia kobus DC. (Magnoliaceae). J. Plant Res. 114:411–422.CrossRefGoogle Scholar
  10. Azuma, H., Rico-Gray, V., Garcia-Franco, J. G., Toyota, M., Asakawa, Y., and Thien L. B. 2004. Close relationship between Mexican and Chinese Magnolia (Subtropical disjunct of Magnoliaceae) inferred from molecular and floral scent analysis. Acta Phytotaxon. 55:167–180.Google Scholar
  11. Barkman, T. J., Beaman, J. H., and Gage, D. A. 1997. Floral fragrance variation in Cypripedium: implication for evolutionary and ecological studies. Phytochemistry 44:875–882.CrossRefGoogle Scholar
  12. Barták, P., Bednar, P., Cap, L., Ondrakova, L., and Stransky., Z. 2003. SPME—a valuable tool for investigation of flower scent. J. Sep. Sci. 26:715–721.CrossRefGoogle Scholar
  13. Batlle, I. and Tous, J. 1997. Carob tree. Ceratonia siliqua L. Promoting the conservation and use of under-utilised and neglected crops. Plant Genetic Resource Institute, Gatersleben/International, Rome.Google Scholar
  14. Bergström, G., Dobson, H. E. M., and Groth, I. 1995. Spatial fragrance patterns within the flowers of Ranunculus acris (Ranunculaceae). Plant Syst. Evol. 195:221–242.CrossRefGoogle Scholar
  15. Bosch, J., Garcia del Pino, F., Ramoneda, J., and Retana, J. 1996. Fruiting phenology and fruit-set of carob, Ceratonia siliqua L. (Caesalpiniaceae). Isr. J. Plant Sci. 44:359–368.Google Scholar
  16. Charlesworth, D. 1999. Theories on the evolution of dioecy, pp. 33–60, in M. A. Geber, T. E. Dawson, and L. F. Delph (eds.). Gender and Sexual Dimorphism in Flowering Plants. Springer-Verlag, Berlin, Germany.Google Scholar
  17. Custódio, L. 2005. New Insight on Carob Floral Biology. PhD Dissertation. Universidade do Algarve, Portugal.Google Scholar
  18. Custódio, L., Nogueira, J. M. F., and Romano, A. 2004. Sex and developmental stage of carob flowers affects composition of volatiles. J. Hortic. Sci. Biotechnol. 75:689–692.Google Scholar
  19. Dobson, H. E. M. 1994. Floral volatiles in insect biology, pp. 47–81, in E. Bernays (ed.). Insect–Plant Interaction, Vol. 5. CRC Press, Boca Raton, FL.Google Scholar
  20. Dobson, H. E. M. and Bergström, G. 2000. The ecology and evolution of pollen odors. Plant Syst. Evol. 222:63–87.CrossRefGoogle Scholar
  21. Dobson, H. E. M., Bergström, G., and Groth, I. 1990. Differences in fragrance chemistry between flower parts o Rosa rugosa Thunb. (Rosaceae). Isr. J. Bot. 39:143–156.Google Scholar
  22. Dobson, H. E. M., Groth, I., and Bergström, G. 1996. Pollen advertisement: chemical contrasts between whole-flower and pollen odors. Am. J. Bot. 83:877–885.CrossRefGoogle Scholar
  23. Dötterl, S. and Jürgens, A. 2005. Spatial fragrance patterns in flowers of Silene latifolia: lilac compounds as olfactory nectar guides? Plant Syst. Evol. 255:99–109.CrossRefGoogle Scholar
  24. Dudareva, N. and Pichersky, E. 2000. Biochemical and molecular genetic aspects of floral scents. Plant Physiol. 122:627–633.CrossRefPubMedGoogle Scholar
  25. Dudareva, N., Murfitt, L., Mann, C., Gorenstein, N., Kosolova, N., Kish, C., Bonham, C., and Wood, K. 2000. Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. Plant Cell 12:949–961.PubMedCrossRefGoogle Scholar
  26. Eckhart, V. M. 1999. Sexual dimorphism in flowers and inflorescences, pp. 123–148, in M. A. Geber, T. E. Dawson, and L. F. Delph (eds.). Gender and Sexual Dimorphism in Flowering Plants. Springer-Verlag, Berlin, Germany.Google Scholar
  27. Ervik, F., Tollsten, L., and Knudsen, J. T. 1999. Floral scent chemistry and pollination ecology in phytelephantoid palms (Arecaeae). Plant Syst. Evol. 217:279–297.CrossRefGoogle Scholar
  28. Flamini, G., Cioni, P., and Morelli, I. 2003. Use of solid-phase micro-extraction as a sampling technique in the determination of volatiles emitted by flowers, isolated flower parts and pollen. J. Chromatogr. A. 998:229–233.CrossRefPubMedGoogle Scholar
  29. Galen, C. 1999. Flowers and enemies: predation by nectar thieving ants in relation to variation in floral form of an alpine wildflower, Polemonium viscosum. Oikos 85:426–434.CrossRefGoogle Scholar
  30. Grison-Pige, L., Bessiere, J.-M., Turlings, T. C. J., Kjellberg, F., Roy, J., and Hossaert-McKey, M. M. 2001. Limited intersex mimicry of floral odour in Ficus carica. Funct. Ecol. 15:551–558.CrossRefGoogle Scholar
  31. Johnson, S. D. and Steiner, K. E. 2000. Generalization versus specialization in plant pollination systems. Trends Ecol. Evol. 15:140–143.CrossRefPubMedGoogle Scholar
  32. Jones, A. and Burd, M. 2001. Vegetative and reproductive variation among unisexual and hermaphroditic individuals of Wurmbea dioica (Colchicaceae). Aust. J. Bot. 49:603–609.CrossRefGoogle Scholar
  33. Keskitalo, M., Pehu, E., and Simon, J. E. 2001. Variation in volatile compounds from tansy (Tanacetum vulgare L.) related to genetic and morphological differences of genotypes. Biochem. Syst. Ecol. 29:267–285.CrossRefPubMedGoogle Scholar
  34. Knudsen, J. T. and Tollsten, L. 1991. Floral scent and intrafloral scent differentiation in Moneses and Pyrola (Pyrolaceae). Plant Syst. Evol. 177:81–91.CrossRefGoogle Scholar
  35. Knudsen, J. T., Andersson, S., and Bergman, P. 1999. Floral scent attraction in Geonoma macrostachys, an understorey palm of the Amazonian rain forest. Oikos 85:409–418.CrossRefGoogle Scholar
  36. MacTavish, H. and Menary, R. 1997. Volatiles in different floral organs, and effect of floral characteristics on yield of extract from Boronia megastigma (Nees). Ann. Bot. 80:305–311.CrossRefGoogle Scholar
  37. Martins-Loução, M. A. and Brito de Carvalho, J. 1989. A cultura da alfarrobeira. DGPA. Série divulgação no. 1, Lisboa.Google Scholar
  38. Mitrakos, K. 1981. Plant life under Mediterranean climatic conditions. Port. Acta Biol. 16:33–44.Google Scholar
  39. Nam, K. H., Dudareva, N., and Pichersky, E. 1999. Characterization of benzylalcohol acetyltransferases in scented and non-scented Clarkia species. Plant Cell Physiol. 40:916–923.PubMedGoogle Scholar
  40. Nojima, S., Linn, J. R. C., and Roelofs, W. 2003. Identification of host fruit volatiles from flowering dogwood (Cornus florida) attractive to dogwood-origin Rhagoletis pomonella flies. J. Chem. Ecol. 29:2347–2357.CrossRefPubMedGoogle Scholar
  41. Ômura, H., Honda, K., and Hayashi, N. 1999. Chemical and chromatic bases for preferential visiting by the cabbage butterfly, Pieris rapae, to rape flowers. J. Chem. Ecol. 25:1895–1906.CrossRefGoogle Scholar
  42. Ortiz, P., Arista, M., and Talavera, S. 1996. Producción de néctar y frecuencia de polinizadores en Ceratonia siliqua L. (Caesalpiniaceae). An. Jard. Bot. Madr. 54:540–546.Google Scholar
  43. Ortiz, P., Arista, M., and Talavera, S. 1999. Distance-independent fruit-set pattern in a dioecious population of Ceratonia siliqua (Caesalpiniaceae). Flora 194:277–280.Google Scholar
  44. Pellati, F., Benvenuti, S., Yoshizaki, F., Bertelli, D., and Rossi, M. C. 2005. Headspace solid-phase microextraction–gas chromatography–mass spectrometry analysis of the volatile compounds of Evodia species fruits. J. Chromatogr. A. 1087:265–273.CrossRefPubMedGoogle Scholar
  45. Pichersky, E. and Gershenzon, J. 2002. The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 5:237–243.CrossRefPubMedGoogle Scholar
  46. Pichersky, E., Raguso, R. A., Lewinshohn, E., and Croteau, R. 1994. Floral scent production in Clarkia (Onagraceae). Plant Physiol. 106:1533–1540.PubMedGoogle Scholar
  47. Raguso, R. A. 2004. Why are some floral nectars scented? Ecology 85:1486–1494.CrossRefGoogle Scholar
  48. Retana, J., Ramoneda, J., Garcia del Pino, F., and Bosch, J. 1994. Flowering phenology of carob, Ceratonia siliqua L. (Caesalpinioideae). J. Hortic. Sci. 69:97–103.Google Scholar
  49. Roshchina, V. V. and Roshchina, V. D. 1993. The Excretory Function of Higher Plants. Springer, Berlin Heidelberg New York.Google Scholar
  50. Siani, A. C., Tappin, M. R. R., Ramos, M. F. S., Mazzei, J. L., Ramos, M. C. K. V., de Aquino Neto, F. R., and Frighetto, N. J. 2002. Linalool from Lippia alba: study of the reproducibility of the essential oil profile and the enantiomeric purity. Agric. Food Chem. 50:3518–3521.CrossRefGoogle Scholar
  51. Tasin, M., Anfor, G., Ioriatti, C., Carlin, S., De Cristofaro, A., Schmidt, S., Bengtsson, M., Versini, G., and Witzgall, P. 2005. Antennal and behavioural responses of grapevine moth Lobesia botrana females to volatiles from grapevine. J. Chem. Ecol. 31:77–87.CrossRefPubMedGoogle Scholar
  52. Thornburg, R. W., Carter, C., Powell, A., Mittler, R., Rizhsky, L., and Horner, H. T. 2003. A major function of the tobacco floral nectary is defense against microbial attack. Plant Syst. Evol. 238:211–218.Google Scholar
  53. Tollsten, L. and Knudsen, J. T. 1992. Floral scent in dioecious Salix (Salicaeae)—a cue determining pollination system? Plant Syst. Evol. 182:229–237.CrossRefGoogle Scholar
  54. Tollsten, L. and Bergström, G. 1993. Fragrance chemotypes of Platanthera (Orchidaceae): the result of adaptation to pollinating moths? Nord. J. Bot. 13:607–613.CrossRefGoogle Scholar
  55. Tóth, E. N., Szabó, L. G., Botz, L., and Orosz-Kovács, Z. 2003. Effect of rootstocks on floral nectar composition in apple cultivars. Plant Syst. Evol. 238:43–55.Google Scholar
  56. Tucker, S. 1992. The developmental basis for sexual expression in Ceratonia siliqua (Leguminosae: Caesalpinioideae: Cassieae). Am. J. Bot. 79:318–327.CrossRefGoogle Scholar
  57. Williams, C. F., Kuchenreuther, M. A., and Drew, A. 2000. Floral dimorphism, pollination, and self-fertilization in gynodioecious Geranium richardsonii (Geraniaceae). Am. J. Bot. 87:661–669.CrossRefPubMedGoogle Scholar
  58. Wright, G. A., Skinner, B. D., and Smith, B. H. 2002. Ability of honeybee, Apis mellifera, to detect and discriminate odours of varieties of canola (Brassica rapa and Brassica napus) and snapdragon flowers (Antirrhinum majus). J. Chem. Ecol. 28:721–740.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Luísa Custódio
    • 1
  • Hugo Serra
    • 2
  • José Manuel F. Nogueira
    • 2
    • 3
  • Sandra Gonçalves
    • 1
  • Anabela Romano
    • 1
  1. 1.Faculdade de Engenharia de Recursos NaturaisUniversidade do AlgarveFaroPortugal
  2. 2.Departamento de Química e BioquímicaFaculdade de Ciências da Universidade de LisboaLisbonPortugal
  3. 3.Centro de Ciências Moleculares e MateriaisFaculdade de Ciências da Universidade de LisboaLisbonPortugal

Personalised recommendations