Advertisement

Journal of Chemical Ecology

, Volume 32, Issue 3, pp 657–667 | Cite as

Beyond 9-ODA: SEX Pheromone Communication in the European Honey Bee Apis mellifera L.

  • Axel Brockmann
  • Daniel Dietz
  • Johannes Spaethe
  • Jürgen Tautz
Article

Abstract

The major component of the mandibular gland secretion of queen honeybees (Apis mellifera L.), 9-ODA ((2E)-9-oxodecenoic acid), has been known for more than 40 yr to function as a long-range sex pheromone, attracting drones at congregation areas and drone flyways. Tests of other mandibular gland components failed to demonstrate attraction. It remained unclear whether these components served any function in mating behavior. We performed dual-choice experiments, using a rotating drone carousel, to test the attractiveness of 9-ODA compared to mixtures of 9-ODA with three other most abundant components in virgin queen mandibular gland secretions: (2E)-9-hydroxydecenoic acid (9-HDA), (2E)-10-hydroxydecenoic acid (10-HDA), and p-hydroxybenzoate (HOB). We found no differences in the number of drones attracted to 9-ODA or the respective mixtures over a distance. However, adding 9-HDA and 10-HDA, or 9-HDA, 10-HDA, and HOB to 9-ODA increased the number of drones making contact with the baited dummy. On the basis of these results, we suggest that at least 9-HDA and 10-HDA are additional components of the sex pheromone blend of A. mellifera.

Key Words

Sex pheromone mating behavior mandibular gland honeybee Apis mellifera (2E)-9-oxodecenoic acid (2E)-9-hydroxydecenoic acid (2E)-10-hydrodecenoic acid 

Notes

Acknowledgments

We thank G. Eisenmann and N. Schneider, who built the drone carousel, and K. Galmbacher and P. Bernbauer, who helped with data collection. J.S. and A.B. were supported by the German Research Foundation DFG (SFB554 and Graduiertenkolleg 200).

References

  1. Ayasse, M., Paxton, R. J., and Tengö, J. 2001. Mating behavior and chemical communication in the order Hymenoptera. Annu. Rev. Entomol. 46:31–78.PubMedCrossRefGoogle Scholar
  2. Boch, R., Shearer, D. A., and Young, J. C. 1975. Honeybee pheromones: Field tests of natural and artificial queen substance. J. Chem. Ecol. 1:133–148.CrossRefGoogle Scholar
  3. Brockmann, A. and Brückner, D. 2005. Drone antennae and the evolution of sex-pheromone communication in honeybees. Indian Bee J. 65:131–138.Google Scholar
  4. Brockmann, A., Brückner, D., and Crewe, R. M. 1998. The EAG response spectra of workers and drones to queen honey bee mandibular gland components: The evolution of a social signal. Naturwissenschaften 85:283–285.CrossRefGoogle Scholar
  5. Butler, C. G. 1971. The mating behavior of the honeybee. J. Entomol. (A) 46:1–11.Google Scholar
  6. Butler, C. G., Calam, D. H., and Calow, R. K. 1967. Attraction of Apis mellifera drones by the odours of the queens of two other species of honeybees. Nature 213:423–424.PubMedCrossRefGoogle Scholar
  7. Christensen, T. A. 1997. Anatomical and physiological diversity in the central processing of sex pheromone information in different moth species, pp. 184–193. in R.T. Cardé and A. K. Minks (eds.). Insect Pheromone Research. New Directions. Chapman and Hall, New York.Google Scholar
  8. Free, J. B., 1987. Pheromones of Social Bees. Comstock, Ithaca, NY.Google Scholar
  9. Gary, N. E., 1962. Chemical mating attractants in the queen honey bee. Science 136:773–774.PubMedCrossRefGoogle Scholar
  10. Gary, N. E. and Marston, J. 1971. Mating behavior of drone honeybees with queen models (Apis mellifera L.), Anim. Behav. 19:299–304.CrossRefGoogle Scholar
  11. Gries, M. and Koeniger, N. 1996. Straight forward to the queen: Pursuing honeybee drones (Apis mellifera L.) adjust their body axis to the direction of the queen. J. Comp. Physiol. A 179:539–544.CrossRefGoogle Scholar
  12. Keeling, C. I., Slessor, K. N., Higo, H. A., and Winston, M. L. 2003. New components of the honey bee (Apis mellifera L.) queen retinue pheromone. Proc. Natl. Acad. Sci. USA 100:4486–91.PubMedCrossRefGoogle Scholar
  13. Koeniger, N. and Koeniger, G. 2000. Reproductive isolation among species of the genus Apis. Apidologie 31:313–339.CrossRefGoogle Scholar
  14. Linn, C. E. Jr., Campbell, M. G., and Roelofs, W. L. 1986. Male moth sensitivity to multicomponent pheromones. Critical role of female-released blend in determining the functional role of components and active space of the pheromone. J. Chem. Ecol. 12:659–668.CrossRefGoogle Scholar
  15. Loper, G. M., Taylor, O. R. Jr., Foster, L. J., and Kochansky, J. 1996. Relative attractiveness of queen mandibular pheromone components to honey bee (Apis mellifera L.) drones. J. Apic. Res. 35:122–123.Google Scholar
  16. Phelan, P. L. 1992. Evolution of sex pheromones and the role of asymmetric tracking, pp. 265–314, in B. D. Roitberg and M. B. Ismam (eds.). Insect Chemical Ecology. An Evolutionary Approach. Chapman and Hall, New York.Google Scholar
  17. Plettner, E., Slessor, K. N., Winston, M. L., and Oliver, J. E. 1996. Caste-selective pheromone biosynthesis in honeybees. Science 271:1851–1853.CrossRefGoogle Scholar
  18. Plettner, E., Otis, G. W., Wimalarntne, P. D. C., Winston, M. L., Slessor, K. N., Pankiw, T., and Punchihewa, P. W. K. 1997. Species- and caste determined mandibular gland signals in honeybees (Apis). J. Chem. Ecol. 23:363–375.CrossRefGoogle Scholar
  19. Renner, M. and Vierling, G. 1977. Die Rolle des Taschendrüsenpheromons beim Hochzeitsflug der Bienenkönigin. (The secretion of the tergite glands and the attractiveness of the queen honeybee to drones in the mating flight). Behav. Ecol. Sociobiol. 2:329–338.CrossRefGoogle Scholar
  20. Ruttner, F., 1985. Reproductive behaviour in honeybees, pp. 225–236, in B. Hölldobler and M. Lindauer (eds.). Fortschritte der Zoologie, Vol. 31. Gustav Fischer Verlag, Stuttgart.Google Scholar
  21. Ruttner, F. and Kaissling, K.-E. 1968. Über die interspezifische Wirkung des Sexuallockstoffes von Apis mellifica und Apis cerana. Z. Vergl. Physiol. 59:362–370.CrossRefGoogle Scholar
  22. Sanasi, A., Ratulu, G. S., and Sundara, G. 1971. 9-Oxodec-trans-2-enoic acid in the Indian honey bees. Life Sci. 10:195–201.CrossRefGoogle Scholar
  23. Shearer, D. A., Boch, R., Morse, R. A., and Laigo, F. M. 1970. Occurence of 9-oxodec-trans-2-enoic acid in queens of Apis dorsata, Apis cerana, and Apis mellifera. J. Insect Physiol. 16:1437–1441.CrossRefGoogle Scholar
  24. Slessor, K. N., Kaminski, L. A., King, G. G. S., Borden, J. H., and Winston, M. L. 1988. Semichemical basis for retinue response to queen honey bees. Nature 332:354–356.CrossRefGoogle Scholar
  25. Velthuis, H. H. W. 1985. The honeybee queen and the social organization of her colony. Fortschr. Zool. 31:343–357.Google Scholar
  26. Wilson, E. O. 1971. The Insect Societies. Harvard University Press, Cambridge, MA.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Axel Brockmann
    • 1
    • 2
  • Daniel Dietz
    • 1
  • Johannes Spaethe
    • 1
    • 3
  • Jürgen Tautz
    • 1
  1. 1.Beegroup Würzburg, Department of Behavioral Physiology and SociobiologyUniversity of Würzburg Germany
  2. 2.Department of Entomology, Neuroscience ProgramUniversity of Illinois at Urbana–ChampaignUrbanaUSA
  3. 3.Department of Evolutionary BiologyUniversity of ViennaViennaAustria

Personalised recommendations