Journal of Chemical Ecology

, Volume 32, Issue 3, pp 595–604 | Cite as

Leaf Epicuticular Wax Chemicals of the Japanese Knotweed Fallopia japonica as Oviposition Stimulants for Ostrinia latipennis

  • Guoqing Li
  • Yukio Ishikawa


Extraction, fractionation, and gas chromatography−mass spectrometry analyses guided by bioassays have shown that n-alkanes and free fatty acids in leaf epicuticular wax of the Japanese knotweed Fallopia (Reynoutria) japonica stimulate oviposition in the Far-Eastern knotweed borer, Ostrinia latipennis (Lepidoptera: Crambidae). n-Alkanes made up 48.1% of the total amount of epicuticular wax, and their carbon chain length was in the C16−C33 range, with n-nonacosane (n-C29) most abundant, followed by n-C27, n-C25, and n-C31. Free fatty acids with C9−C22 accounted for 22.3%, and hexadecanoic acid was predominant. A mixture of authentic n-alkanes and fatty acids of the composition found in the epicuticular wax, a mixture of n-alkanes, and a mixture of fatty acids significantly enhanced oviposition. Thus, it was demonstrated that both n-alkanes and free fatty acids in leaf epicuticular wax of F. japonica are naturally occurring oviposition stimulants for O. latipennis.

Key Words

Fallopia japonica Ostrinia latipennis alkane fatty acid oviposition stimulant 



A postdoctoral research fellowship to G. Li from the Japanese Society for the Promotion of Science (No. 14-02209) is acknowledged. We thank Dr. S. Tatsuki and Dr. S. Hoshizaki of our laboratory for useful discussions during the course of this research.


  1. Breeden, D. C., Young, T. E., Coates, R. M., and Juvik, J. A. 1996. Identification and bioassay of kairomones for Helicoverpa zea. J. Chem. Ecol. 22:513–539.CrossRefGoogle Scholar
  2. De Jesus, L. R. A., Calumpang, S. M. F., Medina, J. R., and Ohsawa, K. 2003. Component fatty acids from green mango fruit surface stimulate oviposition of the mango pulp weevil, Sternochetus frigidus. Philipp. Agric. Sci. 86:38–45.Google Scholar
  3. Eigenbrode, S. D. and Espelie, K. E. 1995. Effects of plant epicuticular lipids on insect herbivores. Annu. Rev. Entomol. 40:171–194.CrossRefGoogle Scholar
  4. Grant, G. G., Zhao, B., and Langevin, D. 2000. Oviposition response of spruce budworm (Lepidoptera: Tortricidae) to aliphatic carboxylic acids. Environ. Entomol. 29:164–170.CrossRefGoogle Scholar
  5. Honda, K. 1995. Chemical basis of differential oviposition by lepidopterous insects. Arch. Insect Biochem. Physiol. 30:1–23.CrossRefGoogle Scholar
  6. Kolattukudy, P. E. 1996. Biosynthetic pathways of cutin and waxes, their sensitivity to environmental stresses, pp. 83–108, in G. Kersteins (ed.), Plant Cuticles, An Integrated Functional Approach, BIOS Scientific Publishers Ltd, Oxford.Google Scholar
  7. Ishikawa, Y., Takanashi, T., Kim, C., Hoshizaki, S., Tatsuki, S., and Huang, Y. 1999. Ostrinia spp. in Japan: their host plants and sex pheromones. Entomol. Exp. Appl. 91:237–244.CrossRefGoogle Scholar
  8. Li, G. and Ishikawa, Y. 2004. Oviposition deterrents in larval frass of four Ostrinia species fed on an artificial diet. J. Chem. Ecol. 30:1445–1456.PubMedCrossRefGoogle Scholar
  9. Li, G. and Ishikawa, Y. 2005. Oviposition deterrents from the egg masses of adzuki bean borer, Ostrinia scapulalis and Asian corn borer, O. furnacalis. Entomol. Exp. Appl. 115:401–407.CrossRefGoogle Scholar
  10. Metcalf, R. L. 1985. Plant kairomones and insect pest control. Ill. Nat. Hist. Surv. Bull. 33:175–196.Google Scholar
  11. Miyazawa, M. and Kameoka, H. 1976. The constituents of the steam volatile oil from Polygonum reynoutria Makino. Yakushigaku Zasshi 96:1076–1080.Google Scholar
  12. Mutuura, A. and Munroe, E. 1970. Taxonomy and distribution of the European corn borer and allied species: genus Ostrinia (Lepidoptera: Pyralidae). Mem. Entomol. Soc. Can. 71:1–112.Google Scholar
  13. Nelson, D. R., Olson, D. L., and Fatland C. L. 2002. Cuticular hydrocarbons of the flea beetles, Aphthona lacertosa and Aphthona nigriscutis, biocontrol agents for leafy spurge (Euphorbia esula). Comp. Biochem. Physiol., B 133:337–350.CrossRefGoogle Scholar
  14. Ohlrogge, J. B. and Jaworski, J. G. 1997. Regulation of fatty acids synthesis. Annu. Rev. Plant Physiol. Mol. Biol. 48:109–136.CrossRefGoogle Scholar
  15. Ohno, S. 2003. A new knotweed-boring species of the genus Ostrinia Hübner (Lepidoptera: Crambidae) from Japan. Entomol. Sci. 6:77–83.CrossRefGoogle Scholar
  16. Parr, M. J., Tran, B. M. D., Simmonds, M. S. J., Kite, G. C., and Credland, P. F. 1998. Influence of some fatty acids on oviposition by the bruchid beetle, Callosobruchus maculatus. J. Chem. Ecol. 24:1577–1593.CrossRefGoogle Scholar
  17. Phelan, P. L., Roelofs, W. L., Youngman, R. R., and Baker, T. C. 1991. Characterization of chemicals mediating ovipositional host-plant finding by Amyelois transitella females. J. Chem. Ecol. 17:599–613.CrossRefGoogle Scholar
  18. Renwick, J. A. A. and Chew, F. S. 1994. Oviposition behavior in Lepidoptera. Annu. Rev. Entomol. 39:377–400.CrossRefGoogle Scholar
  19. Shepherd, T., Robertson, G. W., and Griffiths, D. W. 1995. Compositional analysis of intact alkyl esters in leaf epicuticular wax of swede by capillary gas chromatography and electron-impact mass spectrometry. Phytochem. Anal. 6:65–73.CrossRefGoogle Scholar
  20. Shepherd, T., Robertson, G. W., Griffiths, D. W., and Birch, A. N. E. 1999. Epicuticular wax composition in relation to aphid infestation and resistance in red raspberry (Rubus idaeus L.). Phytochemistry 52:1239–1254.CrossRefGoogle Scholar
  21. Spencer, J. L. 1996. Waxes enhance Plutella xylostella oviposition in response to sinigrin and cabbage homogenates. Entomol. Exp. Appl. 81:165–173.CrossRefGoogle Scholar
  22. Städler, E. 1986. Oviposition and feeding stimuli in leaf surface waxes, pp. 105–112, in B. E. Juniper and T. R. E. Southwood (eds.). Insects and the Plant Surface. Edward Arnold, London.Google Scholar
  23. Udayagiri, S. and Mason, C. E. 1997. Epicuticular wax chemicals in Zea mays influence oviposition in Ostrinia nubilalis. J. Chem. Ecol. 23:1675–1687.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Laboratory of Applied Entomology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  2. 2.Key Laboratory of Monitoring and Management of Plant Diseases and Pests, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina

Personalised recommendations