Journal of Chemical Ecology

, Volume 32, Issue 2, pp 435–451 | Cite as

(Z)-9-Nonacosene—Major Component of the Contact Sex Pheromone of the Beetle Megacyllene caryae

  • Matthew D. Ginzel
  • Jardel A. Moreira
  • Ann M. Ray
  • Jocelyn G. Millar
  • Lawrence M. Hanks


Male Megacyllene caryae (Gahan) (Coleoptera: Cerambycidae) respond to females only after touching them with their antennae, indicating that mate recognition is mediated by a contact sex pheromone. Gas chromatography-mass spectrometry analyses of whole-body solvent extracts of male and female M. caryae revealed substantial differences in hydrocarbon profiles, with nearly half of the compounds in the extracts from females being absent from those of males. Biological activities of fractions of crude extracts of females, and reconstructed blends of the most abundant straight-chain (nC27, nC28, nC29), methyl-branched (2Me-C26, 9Me-C29, 11, 13, 15Me-C29), and unsaturated (Z9:C29, Z13:C29, Z14:C29, Z13:C31, Z14:C31, Z15:C31) compounds in extracts of females were tested in arena bioassays, assessing four steps in the mating behavior sequence of males (orientation, arrestment, body alignment, mounting and attempting to couple the genitalia). Males showed limited response to dead females treated with fractions of the crude extract or blends of synthetic straight-chain and methyl-branched alkanes, but responded strongly to the blend of synthetic monoenes. Further trials determined that the complete sequence of mating behaviors, up to and including coupling the genitalia, was elicited by Z9:C29 alone. Z9:C29 is a homolog of the contact pheromone (Z9:C25) of the congener M. robiniae (Förster). Previous work with M. robiniae suggested that wipe sampling of cuticular hydrocarbons of females by solid phase microextraction yielded a more representative profile of components actually encountered by a male’s antennae, and so provided a more readily interpretable profile of potential semiochemicals present in the wax layer than does solvent extraction. We tested this hypothesis by comparing hydrocarbon profiles of female M. caryae by the two sampling methods. Z9:C29 was the only compound among the dominant hydrocarbons that was present in higher abundance in SPME than in solvent extracts (∼12% vs. ∼8%, respectively), supporting this hypothesis.

Key Words

Cerambycidae mating behavior cuticular hydrocarbon solid-phase microextraction contact sex pheromone 



We thank the University of Illinois at Urbana–Champaign (UIUC) Committee on Natural Areas for use of Brownfield Woods for our research, and E. S. Lacey, J. Mohler, K. Rinkenberger, and J. Westberg for assistance in rearing and collecting beetles and maintaining colonies. This research was in partial fulfillment of a PhD degree for M.D.G. from UIUC. We appreciate funding support from the Alphawood Foundation of Chicago, the U.S. Forest Service (agreement #01-JV-11231300-088), and grants to MDG from the Herbert Holdsworth Ross Memorial Fund of the Illinois Natural History Survey and the UIUC Graduate College.

Supplementary material

10886_2005_9010_MOESM1_ESM.pdf (141 kb)
(PDF 144 kb)


  1. Bland, J. M., Osbrink, W. L. A., Cornelius, M. L., Lax, A. R., and Vigo, C. B. 2001. Solid-phase microextraction for the detection of termite cuticular hydrocarbons. J. Chromatogr. A 932:119–127.PubMedCrossRefGoogle Scholar
  2. Blomquist, G. J., Tillman-Wall, J. A., Guo, L., Quilici, D. R., Gu, P., and Schal, C. 1993. Hydrocarbon and hydrocarbon derived sex pheromones in insects: Biochemistry and endocrine regulation, pp. 317–351, in D. W. Stanley-Samuelson and D. R. Nelson (eds.). Insect Lipids: Chemistry, Biochemistry and Biology. University of Nebraska Press, Lincoln, NE.Google Scholar
  3. Burns, D. H., Miller, J. D., Chan, H. K., and Delaney, M. O. 1997. Scope and utility of a new soluble copper catalyst [CuBr–LiSPh–LiBr–THF]: A comparison with other copper catalysts in their ability to couple one equivalent of a Grignard reagent with an alkyl sulfonate. J. Am. Chem. Soc. 119:2125–2133.CrossRefGoogle Scholar
  4. Corey, E. J., Pyne, S. G., and Su, W. 1983. Total synthesis of leukotriene-B5. Tetrahedron Lett. 24:4883–4886.CrossRefGoogle Scholar
  5. Coyne, J. A. 1996. Genetics of a difference in male cuticular hydrocarbons between two sibling species, Drosophila simulans and D. sechellia. Genetics 143:1689–1698.PubMedGoogle Scholar
  6. Fukaya, M., Yasuda, T., Wakamura, S., and Honda, H. 1996. Reproductive biology of the yellow-spotted longicorn beetle, Psacothea hilaris (Pascoe) (Coleoptera: Cerambycidae). III. Identification of contact sex pheromone on female body surface. J. Chem. Ecol. 22:259–270.CrossRefGoogle Scholar
  7. Fukaya, M., Wakamura, S., Yasuda, T., Senda, S., Omata, T., and Fukusaki, E. 1997. Sex pheromonal activity of geometric and optical isomers of synthetic contact pheromone to males of the yellow-spotted longicorn beetle, Psacothea hilaris (Pascoe) (Coleoptera: Cerambycidae). Appl. Entomol. Zool. 32:654–656.Google Scholar
  8. Fukaya, M., Akino, T., Yasuda, T., Wakamura, S., Satoda, S., and Senda, S. 2000. Hydrocarbon components in contact sex pheromone of the white-spotted longicorn beetle, Anoplophora malasiaca (Thomson) (Coleoptera: Cerambycidae) and pheromonal activity of synthetic hydrocarbons. Entomol. Science 3:211–218.Google Scholar
  9. Gibbs, A. G. 1998. Water-proofing properties of cuticular lipids. Am. Zool. 38:471–482.Google Scholar
  10. Ginzel, M. D. and Hanks, L. M. 2003. Contact pheromones as mate recognition cues of four species of longhorned beetles (Coleoptera: Cerambycidae). J. Insect Behav. 16:181–187.CrossRefGoogle Scholar
  11. Ginzel, M. D. and Hanks, L. M. 2005. Role of host plant volatiles in mate location for three species of longhorned beetles. J. Chem. Ecol. 31:213–217.PubMedCrossRefGoogle Scholar
  12. Ginzel, M. D., Blomquist, G. J., Millar, J. G., and Hanks, L. M. 2003a. Role of contact pheromones in mate recognition in Xylotrechus colonus. J. Chem. Ecol. 29:533–545.CrossRefGoogle Scholar
  13. Ginzel, M. D., Millar, J. G., and Hanks, L. M. 2003b. (Z)-9-Pentacosene-contact sex pheromone of the locust borer, Megacyllene robiniae. Chemoecology 13:135–141.CrossRefGoogle Scholar
  14. Kim, G. H., Takabayashi, J., Takahashi, S., and Tabata, K. 1993. Function of contact pheromone in the mating behavior of the cryptomeria bark borer, Semanotus japonicus Lacordaire (Coleoptera: Cerambycidae). Appl. Entomol. Zool. 28:525–535.Google Scholar
  15. Krause, N. and Gerold, A. 1997. Regio- and stereoselective syntheses with organocopper reagents. Angew. Chem., Int. Ed. Engl. 36:187–204.CrossRefGoogle Scholar
  16. Lacey, E. S., Ginzel, M. D., Millar, J. G., and Hanks, L. M. 2004. Male-produced aggregation pheromone of the cerambycid beetle Neoclytus acuminatus acuminatus. J. Chem. Ecol. 30:1493–1507.PubMedCrossRefGoogle Scholar
  17. Liebig, J., Peeters, C., Oldham, N. J., Markstadter, C., and Hölldobler, B. 2000. Are variations in cuticular hydrocarbons of queens and workers a reliable signal of fertility in the ant Harpegnathos saltator? Proc. Natl. Acad. Sci. U.S.A. 97:4124–4131.PubMedCrossRefGoogle Scholar
  18. Linsley, E. G. 1964. The Cerambycidae of North America. Part V. Taxonomy and classification of the subfamily Cerambycinae, tribes Callichromini through Ancylocerini. Univ. Calif. Publ. Entomol. 22:1–197.Google Scholar
  19. Moneti, G., Dani, F. R., Pieraccini, G., and Turillazzi, S. 1997. Solid-phase microextraction of insect epicuticular hydrocarbons for gas chromatographic mass spectrometric analysis. Rapid Commun. Mass. Spectrom. 11:857–862.CrossRefGoogle Scholar
  20. Monnin, T., Malosse, C., and Peeters, C. 1998. Solid-phase microextraction and cuticular hydrocarbon differences related to reproductive activity in queenless ant Dinoponera quadriceps. J. Chem. Ecol. 24:473–490.CrossRefGoogle Scholar
  21. Nelson, D. R. 1993. Methyl-branched lipids in insects, pp. 271–315, in D. W. Stanley-Samuelson and D. R. Nelson (eds.). Insect Lipids: Chemistry, Biochemistry, and Biology. University of Nebraska Press, Lincoln, Nebraska.Google Scholar
  22. Nelson, D. R. and Blomquist, G. J. 1995. Insect waxes, pp. 1–90, in R. J. Hamilton (ed.). Waxes: Chemistry, Molecular Biology, and Function. The Oily Press, Dundee, Scotland.Google Scholar
  23. Nelson, D. R. and Carlson, D. A. 1986. Cuticular hydrocarbons of the tsetse flies Glossina morsitans morsitans, G. austeni, and G. pallidipes. Insect Biochem. 16:403–416.CrossRefGoogle Scholar
  24. Page, M., Nelson, L. J., Blomquist, G. J., and Seybold, S. J. 1997. Cuticular hydrocarbons as chemotaxonomic characters of pine engraver beetles (Ips spp.) in the grandicollis subgeneric group. J. Chem. Ecol. 23:1053–1099.CrossRefGoogle Scholar
  25. Peeters, C., Monnin, T., and Malosse, C. 1999. Cuticular hydrocarbons correlated with reproductive status in a queenless ant. Proc. R. Soc. Lond. B 266:1323–1327.CrossRefGoogle Scholar
  26. Roux, E., Sreng, L., Provost, E., Roux, M., and Clement, J. L. 2002. Cuticular hydrocarbon profiles of dominant versus subordinate male Nauphoeta cinerea cockroaches. J. Chem. Ecol. 28:1221–1235.PubMedCrossRefGoogle Scholar
  27. Sledge, M. F., Moneti, G., Pieraccini, G., and Turillazzi, S. 2000. Use of solid phase microextraction in the investigation of chemical communication in social wasps. J. Chromatogr. A 873:73–77.PubMedCrossRefGoogle Scholar
  28. Sokal, R. R. and Rohlf, F. J. 1995. Biometry, 3rd edn. Freeman, New York.Google Scholar
  29. Tentschert, J., Bestmann, H. J., and Heinze, J. 2002. Cuticular compounds of workers and queens in two Leptothorax ant species—a comparison of results obtained by solvent extraction, solid sampling, and SPME. Chemoecology 12:15–21.CrossRefGoogle Scholar
  30. Turillazzi, S., Sledge, M. F., and Moneti, G. 1998. Use of a simple method for sampling cuticular hydrocarbons from live social wasps. Ethol. Ecol. Evol. 10:293–297.Google Scholar
  31. Wang, Q. 1998. Evidence for a contact female sex pheromone in Anoplophora chinensis (Förster) (Coleoptera: Cerambycidae: Lamiinae). Coleopt. Bull. 52:363–368.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Matthew D. Ginzel
    • 1
    • 3
  • Jardel A. Moreira
    • 2
  • Ann M. Ray
    • 1
  • Jocelyn G. Millar
    • 2
  • Lawrence M. Hanks
    • 1
  1. 1.Department of EntomologyUniversity of Illinois at Urbana–ChampaignUrbanaUSA
  2. 2.Department of EntomologyUniversity of CaliforniaRiversideUSA
  3. 3.Department of Biochemistry and Molecular BiologyUniversity of NevadaRenoUSA

Personalised recommendations