Journal of Chemical Ecology

, Volume 31, Issue 5, pp 1187–1203 | Cite as

Allelopathic Effects of Volatile Monoterpenoids Produced by Salvia leucophylla: Inhibition of Cell Proliferation and DNA Synthesis in the Root Apical Meristem of Brassica campestris Seedlings

  • Nami Nishida
  • Satoshi Tamotsu
  • Noriko Nagata
  • Chieko Saito
  • Atsushi Sakai
Research Article


Salvia leucophylla, a shrub observed in coastal south California, produces several volatile monoterpenoids (camphor, 1,8-cineole, β-pinene, α-pinene, and camphene) that potentially act as allelochemicals. The effects of these were examined using Brassica campestris as the test plant. Camphor, 1,8-cineole, and β-pinene inhibited germination of B. campestris seeds at high concentrations, whereas α-pinene and camphene did not. Root growth was inhibited by all five monoterpenoids in a dose-dependent manner, but hypocotyl growth was largely unaffected. The monoterpenoids did not alter the sizes of matured cells in either hypocotyls or roots, indicating that cell expansion is relatively insensitive to these compounds. They did not decrease the mitotic index in the shoot apical region, but specifically lowered mitotic index in the root apical meristem. Moreover, morphological and biochemical analyses on the incorporation of 5-bromo-2′-deoxyuridine into DNA demonstrated that the monoterpenoids inhibit both cell-nuclear and organelle DNA synthesis in the root apical meristem. These results suggest that the monoterpenoids produced by S. leucophylla could interfere with the growth of other plants in its vicinity through inhibition of cell proliferation in the root apical meristem.

Key Words

Allelopathy Brassica campestris BrdU camphor 1,8-cineole α-pinene β-pinene camphene DNA synthesis Salvia leucophylla terpenoid volatile growth inhibitor 



The authors thank Dr. Tetsuro Mimura and Dr. Shuichi Sakaguchi for their critical discussions and Ms. Yasuko Tanaka for her technical assistance. This work was supported by a research project (Development of novel weed control technology by applying metabolic gene in plants) from the Ministry of Agriculture, Forestry and Fisheries of Japan (A.S.).


  1. Dayan, F. E., Romagni, J. G., Duke, S. O. 2000Investigating the mode of action of natural phytotoxinsJ. Chem. Ecol.2620792094Google Scholar
  2. De-Oliveira, A. C. A. X., Fidalgo-Neto, A. A., Paumgartten, F. J. R. 1999In vitro inhibition of liver monooxygenases by β-ionone, 1,8-cineole, (−)-menthol and terpineolToxicology1353341Google Scholar
  3. Gershenzon, J., McConkey, M. E., Croteau, R. B. 2000Regulation of monoterpene accumulation in leaves of peppermintPlant Physiol.122205213Google Scholar
  4. Halligan, J. P. 1975Toxic terpenes from Artemisia californicaEcology569991003Google Scholar
  5. Harrington, E. W., Trun, N. J. 1997Unfolding of the bacterial nucleoid both in vivo and in vitro as a result of exposure to camphorJ. Bacteriol.17924352439Google Scholar
  6. Koitabashi, R., Suzuki, T., Kawazu, T., Sakai, A., Kuroiwa, H., Kuroiwa, T. 19971,8-Cineole inhibits root growth and DNA synthesis in the root apical meristem of Brassica campestris LJ. Plant Res.11016Google Scholar
  7. Kuroiwa, T., Kuroiwa, H., Mita, T., Fujie, M. 1990Fluorescence microscopic study of the formation of giant mitochondrial nuclei in the young ovules of Pelargonium zonaleProtoplasma158191194Google Scholar
  8. Mahmoud, S. S., Croteau, R. B. 2002Strategies for transgenic manipulation of monoterpene biosynthesis in plantsTrends Plant Sci.7366373Google Scholar
  9. Molisch, H. 1937Der Einfluss einer Pflanze auf die andere-AllelopathieFischerJenaGoogle Scholar
  10. Müller, C. H. 1965Inhibitory terpenes volatilized from Salvia shrubsBull. Torrey Bot. Club923845Google Scholar
  11. Müller, C. H. 1970Phytotoxins as plant habitat variablesRecent Adv. Phytochem.3106121Google Scholar
  12. Müller, W. H., Müller, C. H. 1964Volatile growth inhibitors produced by Salvia speciesBull. Torrey Bot. Club91327330Google Scholar
  13. Müller, C. H., Müller, W. H., Haines, B. L. 1964Volatile growth inhibitors produced by aromatic shrubsScience143471473Google Scholar
  14. Obroucheva, N. V. 1999Seed Germination: A Guide to the Early StagesBackhuys PublishersLeidenGoogle Scholar
  15. Romagni, J. G., Allen, S. N., Dayan, F. E. 2000Allelopathic effects of volatile cineoles on two weedy plant speciesJ. Chem. Ecol.26303313Google Scholar
  16. Romagni, J. G., Duke, S. O., Dayan, F. E. 2000Inhibition of plant asparagine synthetase by monoterpene cineolesPlant Physiol.123725732Google Scholar
  17. Sakai, A. 2001In vitro transcription/DNA synthesis using isolated organelle-nuclei: Application to the analysis of the mechanisms that regulate organelle genome functionJ. Plant Res.114199211Google Scholar
  18. Sakai, A., Suzuki, T., Nagata, N., Sasaki, N., Miyazawa, Y., Saito, C., Inada, N., Nishimura, Y., Kuroiwa, T. 1999Comparative analysis of DNA synthesis activity in plastid-nuclei and mitochondrial-nuclei simultaneously isolated from cultured tobacco cellsPlant Sci.140919Google Scholar
  19. Sano, Y., Sano, R. 1990Variation of the intergenic spacer region of ribosomal DNA in cultivated and wild rice speciesGenome33209218Google Scholar
  20. Savelev, S., Okello, E., Perry, N. S. L., Wilkins, R. M., Perry, E. K. 2003Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oilPharmacol. Biochem. Behav.75661668Google Scholar
  21. Suzuki, T., Kawano, S., Sakai, A., Fujie, M., Kuroiwa, H., Nakamura, H., Kuroiwa, T. 1992Preferential mitochondrial and plastid DNA synthesis before multiple cell divisions in Nicotiana tabacumJ. Cell. Sci.103831837Google Scholar
  22. Suzuki, T., Sakai, A., Kawano, S., Kuroiwa, T. 1996Organelle DNA synthesis before cell nuclear replication is essential for subsequent cell propagationCytologia61235245Google Scholar
  23. Tamotsu, S., Oishi, T., Nakao, K., Fukada, Y., Shichida, Y., Yoshizawa, T., Morita, Y. 1994Localization of iodopsin and rodopsin immunoreactivity in the retina and pineal complex of the river lamprey, Lampetra japonicaCell Tissue Res.278110Google Scholar
  24. Turner, G. W., Gershenzon, J., Croteau, R. B. 2000Distribution of peltate glandular trichomes on developing leaves of peppermintPlant Physiol.124655663Google Scholar
  25. Turner, G. W., Gershenzon, J., Croteau, R. B. 2000Development of peltate glandular trichomes of peppermintPlant Physiol.124665679Google Scholar
  26. Vaughn, S. F., Spencer, G. F. 1993Volatile monoterpenes as potential parent structures for new herbicidesWeed Sci.41114119Google Scholar
  27. Vaughn, S. F., Spencer, G. F. 1996Synthesis and herbicidal activity of modified monoterpenes structurally similar to cimmethylinWeed Sci.44711Google Scholar
  28. Yadegari, R., Paiva, G., Laux, T., Koltunow, A., Apuya, N., Zimmerman, J., Fischer, R., Harada, J., Goldberg, R. 1994Cell differentiation and morphogenesis are uncoupled in Arabidopsis raspberry embryosPlant Cell617131729Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Nami Nishida
    • 1
  • Satoshi Tamotsu
    • 1
  • Noriko Nagata
    • 2
    • 3
  • Chieko Saito
    • 2
    • 4
  • Atsushi Sakai
    • 1
  1. 1.Department of Biological Science, Faculty of ScienceNara Women’s UniversityNaraJapan
  2. 2.2RIKEN (Institute of Physical and Chemical Research)SaitamaJapan
  3. 3.Department of Chemical and Biological Sciences, Faculty of ScienceJapan Women’s UniversityTokyoJapan
  4. 4.Nara Institute of Science and TechnologyNaraJapan

Personalised recommendations