Advertisement

Journal of Chemical Ecology

, Volume 31, Issue 3, pp 461–480 | Cite as

Variation In Plant Volatiles and Attraction Of The ParasitoidDiadegma semiclausum(Hellén)

  • T. Bukovinszky
  • R. Gols
  • M. A. Posthumus
  • L. E. M. Vet
  • J. C. Van Lenteren
Article

Abstract

Differences in allelochemistry of plants may influence their ability to attract parasitoids.We studied responses of Diadegma semiclausum (Hellén), a parasitoid of the diamondback moth (Plutella xylostella L.), to inter- and intraspecific variation in odor blends of crucifers and a non-crucifer species. Uninfested Brussels sprout (Brassica oleracea L. gemmifera), white mustard (Sinapis alba L.), a feral Brassica oleracea, and malting barley (Hordeum vulgare L.) were compared for their attractivity to D. semiclausum in a Y-tube bioassay. Odors from all plants were more attractive to the parasitoid than clean air. However, tested against each other, parasitoids preferred the volatile blend from the three cruciferous species over that of malting barley.Wasps also discriminated between uninfested crucifers: mustard was as attractive as feral B. oleracea, and both were more attractive than Brussels sprout. Attractivity of uninfested plants was compared with that of plants infested by larvae of the host P. xylostella. Host-infested mustard and Brussels sprout were more attractive than uninfested conspecifics. Interestingly, the volatile blends of uninfested white mustard and infested Brussels sprout were equally attractive.We also compared the volatile composition of different plant sources by collecting headspace samples and analysing them with GC-MS. Similarities of volatile profiles were determined by hierarchic clustering and non-metric scaling based on the Horn-index. Due to the absence of several compounds in its blend, the volatile profile of barley showed dissimilarities from blends of crucifers. The odor profile of white mustard was distinctly different from the two Brassicaceae.Feral Brassica oleracea odor profile was different from infested Brussels sprout, but showed overlap with uninfested Brussels sprout. Odor blends from infested and uninfested Brussels sprout were similar, and mainly quantitative differences were found. D. semiclausum appears to discriminate based on subtle differences in volatile composition of odor blends from infested and uninfested plants.

KeyWords

Diadegma semiclausum Plutella xylostella Hordeum vulgare Sinapis alba Brassica oleracea olfactometer headspace volatiles GC-MS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. G. AGELOPOULOS and KELLER, M. A. 1994. Plant-natural enemy association in the tritrophic system, Cotesia rubecula-Pieris rapae-Brassiceae (Cruciferae): III. Collection and identification of plant and frass volatiles. J. Chem. Ecol. 20:1955–1967.Google Scholar
  2. AGELOPOULOS, N. G., DICKE, M., and POSTHUMUS, M. A. 1995. Role of volatile infochemicals emitted by feces of larvae in host-searching behavior of parasitoid Cotesia rubecula (Hymenoptera: Braconidae): a behavioural and chemical study. J. Chem. Ecol. 21:1789–1811.Google Scholar
  3. BENREY, B., CALLEJAS, A., RIOS, L., OYAMA, K., and DENNO, R. F. 1998. The effects of domestication of Brassica and Phaseolus on the interaction between phytophagous insects and parasitoids. Biol. Control. 11:130–140.Google Scholar
  4. BIGGER, D. S. and FOX, L. R. 1997. High-density populations of diamondback moth have broader host-plant diets. Oecologia. 112:179–186.Google Scholar
  5. A. BLAAKMEER, GEERVLIET, J. B. F., VAN LOON, J. J. A., POSTHUMUS, M. A., VAN BEEK, T. A., and DE GROOT, A. E. 1994. Comparative headspace analysis of cabbage plants damaged by two species of Pieris caterpillars: consequences for in-flight host location by Cotesia parasitoids. Entomol. Exp. Appl. 73:175–182.Google Scholar
  6. DE BOER, J. G. 2004. Bugs in odour space; How predatory mites respond to variation in herbivore-induced plant volatiles. Ph.D. dissertation. Wageningen University, Ponsen & Looijen BV, The Netherlands.Google Scholar
  7. BOTTRELL, D. G., BARBOSA, P., and GOULD, F. 1998. Manipulating natural enemies by plant variety selection and modification: a realistic strategy? Annu. Rev. Entomol. 43:347–367.Google Scholar
  8. BOTTRELL, D. G., BARBOSA, P., and GOULD, F. 1998. Manipulating natural enemies by plant variety selection and modification: a realistic strategy? Annu. Rev. Entomol. 43:347–367.Google Scholar
  9. BUKOVINSZKY, T. 2004. Tailoring complexity; multitrophic interactions in simple and diversified habitats. Ph.D. dissertation. Wageningen University, Ponsen & Looijen BV, The Netherlands.Google Scholar
  10. CORTESERO, A. M., STAPEL, J. O., and LEWIS, W. J. 2000. Understanding and manipulating plant attributes to enhance biological control. Biol. Control. 17:35–49.Google Scholar
  11. CORTESERO, A. M., STAPEL, J. O., and LEWIS, W. J. 2000. Understanding and manipulating plant attributes to enhance biological control. Biol. Control. 17:35–49.Google Scholar
  12. DICKE, M. 1999. Direct and indirect effects of plants on performance of beneficial organisms, pp. 105–153, in J.R. Ruberson, (ed.) Handbook of Pest Management. Marcel Dekker Inc., New York.Google Scholar
  13. G. W. ELZEN, WILLIAMS, H. J., and VINSON, S. B. 1983. Response by the parasitoid Campoletis sonorensis (Hymenoptera: Ichneumonidae) to synomones in plants: Implications for host habitat location. Environ. Entomol. 12:1873–1877. Google Scholar
  14. ELZEN, G. W., WILLIAMS, H. J., and VINSON, S. B. 1986. Wind tunnel flight response by hymenopterous parasitoid Campoletis sonorensis to cotton cultivars and lines. Entomol. Exp. Appl. 42:285–289.Google Scholar
  15. FOX, L. R. and EISENBACH, J. 1992. Contrary choices: possible exploitation of enemy-free space by herbivorous insects in cultivated vs. wild crucifers. Oecologia. 89:574–579.Google Scholar
  16. FOX, L. R. and EISENBACH, J. 1992. Contrary choices: possible exploitation of enemy-free space by herbivorous insects in cultivated vs. wild crucifers. Oecologia. 89:574–579.Google Scholar
  17. GEERVLIET, J. B. F., VET, L. E. M., and DICKE, M. 1996. Innate responses of the parasitoids Cotesia glomerata and C. rubecula (Hymenoptera: Braconidae) to volatiles from different plant-herbivore complexes. J. Insect. Behav. 9:525–538.Google Scholar
  18. GEERVLIET, J. B. F., VET, L. E. M., and DICKE, M. 1996. Innate responses of the parasitoids Cotesia glomerata and C. rubecula (Hymenoptera: Braconidae) to volatiles from different plant-herbivore complexes. J. Insect. Behav. 9:525–538.Google Scholar
  19. GOUINGUENÉ, S., DEGEN, T., and TURLINGS, T. C. J. 2001. Variability in herbivore-induced odour emissions among maize cultivars and their wild ancestors (teosinte). Chemoecology. 11:9–16.Google Scholar
  20. GOUINGUENÉ, S., DEGEN, T., and TURLINGS, T. C. J. 2001. Variability in herbivore-induced odour emissions among maize cultivars and their wild ancestors (teosinte). Chemoecology. 11:9–16.Google Scholar
  21. HARVEY, J. A., VAN DAM, N. M., and GOLS, R. 2003. Interactions over four trophic levels: foodplant quality affects development of a hyperparasitoid as mediated through a herbivore and its primary parasitoid. J. Anim. Ecol. 72:520–531.Google Scholar
  22. HARVEY, J. A., VAN DAM, N. M., and GOLS, R. 2003. Interactions over four trophic levels: foodplant quality affects development of a hyperparasitoid as mediated through a herbivore and its primary parasitoid. J. Anim. Ecol. 72:520–531.Google Scholar
  23. KALULE, T. and WRIGHT, D. J. 2004. The influence of cultivar and cultivar-aphid odours on the olfactory response of the parasitoid Aphidius colemani. J. Appl. Entomol. 128:120–125.Google Scholar
  24. KREBS, C. J. 1989. Niche overlap and diet analysis. pp. 654, in C. J. Krebs (ed.). Ecological Methodology. Harper Collins Publishers, Inc.Google Scholar
  25. LIU, S. S. and JIANG, L. H. 2003. Differential parasitism of Plutella xylostella (Lepidoptera: Plutellidae) larvae by the parasitoid Cotesia plutellae (Hymenoptera: Braconidae) on two host plant species. Bull. Entomol. Res. 93:65–72.Google Scholar
  26. LOUGHRIN, J. H., MANUKIAN, A., HEATH, R. R., and TUMLINSON, J. K. 1995. Volatiles emitted by different cotton varieties damaged by feeding beet armyworm larvae. J. Chem. Ecol. 21:1217–1227.Google Scholar
  27. LOUGHRIN, J. H., MANUKIAN, A., HEATH, R. R., and TUMLINSON, J. K. 1995. Volatiles emitted by different cotton varieties damaged by feeding beet armyworm larvae. J. Chem. Ecol. 21:1217–1227.Google Scholar
  28. MCCLOSKEY, C. and ISMAN, M. B. 1993. Influence of foliar glucosinolates in oilseed rape and mustard on feeding and growth of the bertha armyworm, Mamestra configurata Walker. J. Chem. Ecol. 19:249–266.Google Scholar
  29. MEWIS, I., ULRICH, C. H., and SCHNITZLER, W. H. 2002. The role of glucosinolates and their hydrolysis products in oviposition and host-plant finding by cabbage webworm, Hellula undalis. Entomol. Exp. Appl. 105: 129–139.Google Scholar
  30. MEWIS, I., ULRICH, C. H., and SCHNITZLER, W. H. 2002. The role of glucosinolates and their hydrolysis products in oviposition and host-plant finding by cabbage webworm, Hellula undalis. Entomol. Exp. Appl. 105: 129–139.Google Scholar
  31. OHARA, Y., TAKAFUJI, A., and TAKABAYASHI, J. 2003. Response to host-infested plants in females of Diadegma semiclausum Hellen (Hymenoptera: Ichneumonidae). Appl. Entomol. Zool. 38:157–162.Google Scholar
  32. S. J. OPPENHEIM and GOULD, F. 2002. Behavioural adaptations increase the value of enemy-free space for Heliothis subflexa, a specialist herbivore. Evolution. 56:679–689. Google Scholar
  33. PALANISWAMY, P., GILLOT, C., and SLATER, G. P. 1986. Attraction of diamondback moths, Plutella xylostella (L.) (Lepidoptera: Plutellidae), by volatile compounds of canola, white mustard, and faba bean. Can. Entomol. 118:1279–1285.Google Scholar
  34. PODANI, J. 1997. Bevezetés a többváltozós biológiai adatfeltárás rejtelmeibe. [Introduction to the multivariate analysis of biological data.] Scientia Kiado, Budapest.Google Scholar
  35. R. P. J. POTTING, POPPY, G. M., and SCHULER, T. H. 1999. The role of volatiles from cruciferous plants and pre-flight experience in the foraging behaviour of the specialist parasitoid Cotesia plutellae. Entomol. Exp. Appl. 93:87–95. Google Scholar
  36. READ, D. P., FEENY, P. P., and ROOT, R. B. 1970. Habitat selection by the aphid parasite Diaeretiella rapae (Hymenoptera: Braconidae) and hyperparasite Charips brassicae (Hymenoptera: Cynipidae). Can. Entomol. 102:1567–1578.Google Scholar
  37. REDDY, G. V. P. and GUERRERO, A. 2000. Behavioural responses of the diamondback moth to green leaf volatiles of Brassica oleracea subsp. capitata. J. Agric. Food Chem. 48:6025–6029.Google Scholar
  38. REDDY, G. V. P. and GUERRERO, A. 2000. Behavioural responses of the diamondback moth to green leaf volatiles of Brassica oleracea subsp. capitata. J. Agric. Food Chem. 48:6025–6029.Google Scholar
  39. REED, H. C., TAN, S. H., HAAPENEN, K., KILLMON, M., REED, D. K., and ELLIOT, N. C. 1985. Olfactory responses of the parasitoid Diaeretiella rapae (Hymenoptera: Aphididae) to odour of plants, aphids, and aphid-plant complexes. J. Chem. Ecol. 21:407–418.Google Scholar
  40. SHIOJIRI, K., TAKABAYASHI, J., YANO, S., and TAKAFUJI, A. 2000. Flight response of parasitoids toward plant-herbivore complexes: A comparative study of two parasitoid-herbivore systems on cabbage plants. Appl. Entomol. Zool. 35:87–92.Google Scholar
  41. SHIOJIRI, K., TAKABAYASHI, J., YANO, S., and TAKAFUJI, A. 2001. Infochemically mediated tritrophic interaction webs on cabbage plants. Popul. Ecol. 43:23–29.Google Scholar
  42. H. M. SMID, VAN LOON, J. J. A., POSTHUMUS, M. A., and VET, L. E. M. 2002. GC-EAG-analysis of volatiles from Brussels sprouts plants damaged by two species of Pieris caterpillars: olfactory receptive range of a specialist and a generalist parasitoid wasp species. Chemoecology. 12:169–176. Google Scholar
  43. STEINBERG, S., DICKE, M., and VET, L. E. M. 1993. Relative importance of infochemicals from first and second trophic level in long-range host location by the larval parasitoid Cotesia glomerata. J. Chem. Ecol. 19:47–60.Google Scholar
  44. STEINBERG, S., DICKE, M., VET, L. E. M., and WANNINGEN, R. 1992. Response of the braconid parasitoid Cotesia (=Apanteles) glomerata to volatile infochemicals: effect of bioassay set-up, parasitoid age and experience and barometric flux. Entomol. Exp. Appl. 63:163–175.Google Scholar
  45. STEINBERG, S., DICKE, M., VET, L. E. M., and WANNINGEN, R. 1992. Response of the braconid parasitoid Cotesia (=Apanteles) glomerata to volatile infochemicals: effect of bioassay set-up, parasitoid age and experience and barometric flux. Entomol. Exp. Appl. 63:163–175.Google Scholar
  46. TAKABAYASHI, J., DICKE, M., and POSTHUMUS, M. A. 1994. Volatile herbivore-induced terpenoids in plant mite interactions: variation caused by biotic and abiotic factors. J. Chem. Ecol. 20:1329–1354.Google Scholar
  47. TAKABAYASHI, J., NODA, T., and TAKAHASHI, S. 1991. Plants produce attractants for Apanteles kariyai, a parasitoid of Pseudaletia separate: cases of “communication” and “misunderstanding” in parasitoid-plant interactions. Appl. Entomol. Zool. 26:237–243.Google Scholar
  48. TAKABAYASHI, J., NODA, T., and TAKAHASHI, S. 1991. Plants produce attractants for Apanteles kariyai, a parasitoid of Pseudaletia separate: cases of “communication” and “misunderstanding” in parasitoid-plant interactions. Appl. Entomol. Zool. 26:237–243.Google Scholar
  49. TOLLSTEN, L. and BERGSTRÖM, G. 1988. Headspace volatiles of whole plants and macerated plant parts of Brassica and Sinapis. Phytochemistry. 27:4013–4018.Google Scholar
  50. J. H. TUMLINSON, TURLINGS, T. C. J., and LEWIS, W. J. 1993. Semiochemically mediated foraging behavior in beneficial parasitic insects. Arch. Insect Biochem. 22:385–391.Google Scholar
  51. VAN LENTEREN, J. C., ZHAO, L. H., KAMERMAN, J. W., and XU, R. 1995. The parasite-host relationship between Encarsia formosa (Hym., Aphelinidae) and Trialeurodes vaporariorum (Hom., Aleyrodidae).26. Leaf hairs reduce the capacity of Encarsia to control greenhouse whitefly on cucumber. J. Appl. Entomol. 119:553–559.Google Scholar
  52. VET, L. E. M. 1999. Evolutionary aspects of plant-carnivore interactions, pp. 3–13, in D. J. Chadwick and J. A. Goode (eds.). Insect-Plant Interactions and Induced Plant Defence; Wiley, Chicester.Google Scholar
  53. L. E. M. VET and DICKE, M. 1992. Ecology of infochemical use by natural enemies in a titrophic context. Annu. Rev. Entomol. 37:141–172.Google Scholar
  54. VET, L. E. M., DE JONG, A. G., FRANCHI, E., and PAPAJ, D. R. 1998. The effect of complete vs incomplete information on odour discrimination in a parasitic wasp. Anim. Behav. 55:1271-1279.Google Scholar
  55. L. E. M. VET, WÄCKERS, F., and DICKE, M. 1991. How to hunt for hiding hosts: the reliability-detectability problem in foraging parasitoids. Neth. J. Zool. 41:202–213.Google Scholar
  56. VINSON, S. B. 1976. Host selection by insect parasitoids. Annu. Rev. Entomol. 21:109–133.Google Scholar
  57. VÖLKL, W. and SULLIVAN, D. J. 2000. Foraging behaviour, host plant and host location in the aphid hyperparasitoid Euneura augarus. Entomol. Exp. Appl. 97:47–56.Google Scholar
  58. S. YANO 1994. Ecological and evolutionary interactions between wild crucifers and their herbivorous insects. Plant Spec. Biol. 9:137–143.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • T. Bukovinszky
    • 1
  • R. Gols
    • 1
  • M. A. Posthumus
    • 2
  • L. E. M. Vet
    • 1
    • 3
  • J. C. Van Lenteren
    • 1
  1. 1.Department of Plant SciencesLaboratory of Entomology Wageningen University and Research CentreEH WageningenThe Netherlands
  2. 2.Department of Organic ChemistryWageningen University and Research CentreWageningenThe Netherlands
  3. 3.Netherlands Institute of EcologyCentre for Terrestrial EcologyHeterenThe Netherlands

Personalised recommendations