Hopf Bifurcation of a Delayed Single Population Model with Patch Structure


In this paper, we show the existence of a Hopf bifurcation in a delayed single population model with patch structure. The effect of the dispersal rate on the Hopf bifurcation is considered. Especially, if each patch is favorable for the species, we show that when the dispersal rate tends to zero, the limit of the Hopf bifurcation value is the minimum of the “local” Hopf bifurcation values over all patches. On the other hand, when the dispersal rate tends to infinity, the Hopf bifurcation value tends to that of the “average” model.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Allen, L.J.S., Bolker, B.M., Lou, Y., Nevai, A.L.: Asymptotic profiles of the steady states for an SIS epidemic patch model. SIAM J. Appl. Math. 67(5), 1283–1309 (2007)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Busenberg, S., Huang, W.: Stability and Hopf bifurcation for a population delay model with diffusion effects. J. Differ. Equ. 124(1), 80–107 (1996)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Chen, S., Lou, Y., Wei, J.: Hopf bifurcation in a delayed reaction-diffusion-advection population model. J. Differ. Equ. 264(8), 5333–5359 (2018)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Chen, S., Shi, J.: Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect. J. Differ. Equ. 253(12), 3440–3470 (2012)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Chen, S., Shi, J., Shuai, Z., Wu, Y.: Spectral monotonicity of perturbed quasi-positive matrices with applications in population dynamics (Submitted)

  6. 6.

    Chen, S., Wei, J., Zhang, X.: Hopf bifurcation for a delayed diffusive logistic population model in the advective heterogeneous environment. J. Dyn. Differ, Equ (2019)

    Google Scholar 

  7. 7.

    Chen, S., Yu, J.: Stability and bifurcations in a nonlocal delayed reaction-diffusion population model. J. Differ. Equ. 260(1), 218–240 (2016)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Guo, S.: Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect. J. Differ. Equ. 259(4), 1409–1448 (2015)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Guo, S.: Spatio-temporal patterns in a diffusive model with non-local delay effect. IMA J. Appl. Math. 82(4), 864–908 (2017)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Guo, S., Yan, S.: Hopf bifurcation in a diffusive Lotka-Volterra type system with nonlocal delay effect. J. Differ. Equ. 260(1), 781–817 (2016)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Hale, J.: Theory of Functional Differential Equations. Applied Mathematical Sciences, vol. 3, 2nd edn. Springer, New York (1977)

  13. 13.

    Hu, R., Yuan, Y.: Spatially nonhomogeneous equilibrium in a reaction-diffusion system with distributed delay. J. Differ. Equ. 250(6), 2779–2806 (2011)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics, volume 191 of Mathematics in Science and Engineering. Academic Press Inc, Boston (1993)

  15. 15.

    Liao, K.-L., Lou, Y.: The effect of time delay in a two-patch model with random dispersal. Bull. Math. Biol. 76(2), 335–376 (2014)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Lou, Y.: On the effects of migration and spatial heterogeneity on single and multiple species. J. Differ. Equ. 223(2), 400–426 (2006)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Memory, M.C.: Bifurcation and asymptotic behavior of solutions of a delay-differential equation with diffusion. SIAM J. Math. Anal. 20(3), 533–546 (1989)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Shi, Q., Shi, J., Song, Y.: Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete Contin. Dyn. Syst. Ser. B 24(2), 467–486 (2019)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Smith, H.L., Waltman, P.: The theory of the chemostat, volume 13 of Cambridge Studies in Mathematical Biology. Cambridge University Press, Cambridge (1995). Dynamics of microbial competition

  20. 20.

    Su, Y., Wei, J., Shi, J.: Hopf bifurcations in a reaction–diffusion population model with delay effect. J. Differ. Equ. 247(4), 1156–1184 (2009)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Su, Y., Wei, J., Shi, J.: Hopf bifurcation in a diffusive logistic equation with mixed delayed and instantaneous density dependence. J. Dyn. Differ. Equ. 24(4), 897–925 (2012)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Yan, X.-P., Li, W.-T.: Stability of bifurcating periodic solutions in a delayed reaction-diffusion population model. Nonlinearity 23(6), 1413–1431 (2010)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Yan, X.-P., Li, W.-T.: Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete Contin. Dyn. Syst. Ser. B 17(1), 367–399 (2012)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Yoshida, K.: The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology. Hiroshima Math. J. 12(2), 321–348 (1982)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Zhao, X.-Q., Jing, Z.-J.: Global asymptotic behavior in some cooperative systems of functional-differential equations. Can. Appl. Math. Quart. 4(4), 421–444 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Shanshan Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is supported by the National Natural Science Foundation of China (No. 11771109) and Shandong Provincial Natural Science Foundation of China (No. ZR2020YQ01).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Shen, Z. & Wei, J. Hopf Bifurcation of a Delayed Single Population Model with Patch Structure. J Dyn Diff Equat (2021). https://doi.org/10.1007/s10884-021-09946-8

Download citation


  • Hopf bifurcation
  • Patch structure
  • Delay
  • Dispersal

Mathematics Subject Classification

  • 92D30
  • 34K18
  • 34K13
  • 37N25