Existence and Characterization of Attractors for a Nonlocal Reaction–Diffusion Equation with an Energy Functional


In this paper we study a nonlocal reaction–diffusion equation in which the diffusion depends on the gradient of the solution. Firstly, we prove the existence and uniqueness of regular and strong solutions. Secondly, we obtain the existence of global attractors in both situations under rather weak assumptions by defining a multivalued semiflow (which is a semigroup in the particular situation when uniqueness of the Cauchy problem is satisfied). Thirdly, we characterize the attractor either as the unstable manifold of the set of stationary points or as the stable one when we consider solutions only in the set of bounded complete trajectories.

This is a preview of subscription content, access via your institution.


  1. 1.

    Anh, C.T., Tinh, L.T., Toi, V.M.: Global attractors for nonlocal parabolic equations with a new class of nonlinearities. J. Korean Math. Soc. 55, 531–551 (2018)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Arrieta, J.M., Rodríguez-Bernal, A., Valero, J.: Dynamics of a reaction–diffusion equation with a discontinuous nonlinearity. Int. J. Bifurcat. Chaos Appl. Sci. Eng. 16, 2965–2984 (2006)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations. North Holland, Amsterdam (1992)

    Google Scholar 

  4. 4.

    Brezis, H.: Análisis Funcional, Alianza Universidad, Madrid (1984). (Translated from Brezis, H. (1983). Analyse Fonctionnelle: Théorie et Applications. Masson, Paris)

  5. 5.

    Caballero, R., Carvalho, A.N., Marín-Rubio, P., Valero, J.: Robustness of dynamically gradient multivalued dynamical systems. Discrete Contin. Dyn. Syst. Ser. B 24, 1049–1077 (2019)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Caraballo, T., Herrera-Cobos, M., Marín-Rubio, P.: Long-time behavior of a non-autonomous parabolic equation with nonlocal diffusion and sublinear terms. Nonlinear Anal. 121, 3–18 (2015)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Caraballo, T., Herrera-Cobos, M., Marín-Rubio, P.: Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete Contin. Dyn. Syst. Ser. B 17, 1801–1816 (2017)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Caraballo, T., Herrera-Cobos, M., Marín-Rubio, P.: Time-dependent attractors for non-autonomous non-local reaction–diffusion equations. Proc. R. Soc. Edinb. Sect. A 148A, 957–981 (2018)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Caraballo, T., Herrera-Cobos, M., Marín-Rubio, P.: Robustness of time-dependent attractors in H1-norm for nonlocal problems. Discrete Contin. Dyn. Syst. Ser. B 23, 1011–1036 (2018)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Caraballo, T., Herrera-Cobos, M., Marín-Rubio, P.: Asymptotic behaviour of nonlocal p-Laplacian reaction–diffusion problems. J. Math. Anal. Appl. 459, 997–1015 (2018)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Caraballo, T., Marín-Rubio, P., Robinson, J.: A comparison between two theories for multi-valued semiflows and their asymptotic behaviour. Set Valued Anal. 11, 297–322 (2003)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Chepyzhov, V.V., Vishik, M.I.: Attractors for Equations of Mathematical Physics. Americal Mathematical Society, Providence (2002)

    Google Scholar 

  13. 13.

    Chipot, M.: Elements of Nonlinear Analysis. Birkhäuser, Basel (2000)

    Google Scholar 

  14. 14.

    Chipot, M., Lovat, B.: Some remarks on nonlocal elliptic and parabolic problems. Nonlinear Anal. 30, 461–627 (1997)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Chipot, M., Lovat, B.: On the asymptotic behaviour of some nonlocal problems. Positivity 3, 65–81 (1999)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Chipot, M., Molinet, L.: Asymptotic behaviour of some nonlocal diffusion problems. Appl. Anal. 80, 273–315 (2001)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Chipot, M., Rodrigues, J.F.: On a class of nonlocal nonlinear elliptic problems. Math. Model. Numer. Anal. 26, 447–467 (1992)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Chipot, M., Siegwart, M.: On the Asymptotic behaviour of some nonlocal mixed boundary value problems. In: Agarwal, R.P., O’Regan, D. (eds.) Nonlinear Analysis and Applications: To V. Lakshmikantham on His 80th Birthday, vol. 1, 2, pp. 431–449. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  19. 19.

    Chipot, M., Valente, V., Vergara Caffarelli, G.: Remarks on a nonlocal problem involving the Dirichlet energy. Rend. Sem. Mat. Univ. Padova 110, 199–220 (2003)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Springer, Berlin (1974)

    Google Scholar 

  21. 21.

    Kapustyan, O.V., Kasyanov, P.O., Valero, J.: Structure and regularity of the global attractor of a reacction–diffusion equation with non-smooth nonlinear term. Discrete Contin. Dyn. Syst. 32, 4155–4182 (2014)

    Article  Google Scholar 

  22. 22.

    Kapustyan, O.V., Kasyanov, P.O., Valero, J.: Structure of the global attractor for weak solutions of a reaction-diffusion equation. Appl. Math. Inf. Sci. 9, 2257–2264 (2015)

    MathSciNet  Google Scholar 

  23. 23.

    Kapustyan, O.V., Pankov, V., Valero, J.: On global attractors of multivalued semiflows generated by the 3D Bénard system. Set Valued Var. Anal. 20, 445–465 (2012)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Ladyzhenskaya, O.A.: Some comments to my papers on the theory of attractors for abstract semigroups (in Russian). Zap. Nauchn. Sem. LOMI 182, 102–112 (1990). (English translation in J. Soviet Math. 62, 1789–1794 (1992))

    MATH  Google Scholar 

  25. 25.

    Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Nauka, Moscow (1967)

    Google Scholar 

  26. 26.

    Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Gauthier-Villar, Paris (1969)

    Google Scholar 

  27. 27.

    Lovat, B.: Etudes de quelques problèmes paraboliques non locaux. PhD Thesis, Université de Metz (1995)

  28. 28.

    Melnik, V.S., Valero, J.: On attractors of multi-valued semi-flows and differential inclusions. Set Valued Anal. 6, 83–111 (1998)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Peng, X., Shang, Y., Zheng, X.: Pullback attractors of nonautonomous nonclassical diffusion equations with nonlocal diffusion. Z. Angew. Math. Phys. 69, 110 (2018)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Robinson, J.C.: Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  31. 31.

    Sell, G.R., You, Y.: Dynamics of Evolutionary Equations. Springer, New York (2002)

    Google Scholar 

  32. 32.

    Temam, R.: Navier–Stokes Equations. North-Holland, Amsterdam (1977)

    Google Scholar 

  33. 33.

    Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1988)

    Google Scholar 

  34. 34.

    Werner, D.: Funktionalanalysis. Springer, Berlin (2005)

    Google Scholar 

  35. 35.

    Zheng, S., Chipot, M.: Asymptotic behavior of solutions to nonlinear parabolic equations with nonlocal terms. Asymptot. Anal. 45, 301–312 (2005)

    MathSciNet  MATH  Google Scholar 

Download references


The first author is a fellow of the FPU program of the Spanish Ministry of Education, Culture and Sport, Reference FPU15/03080. This work has been partially supported by the Spanish Ministry of Science, Innovation and Universities, Project PGC2018-096540-B-I00, by the Spanish Ministry of Science and Innovation, Project PID2019-108654GB-I00, and by the Junta de Andalucía and FEDER, Project P18-FR-4509. We would like to thank the reviewer for his/her useful remarks.

Author information



Corresponding author

Correspondence to José Valero.

Additional information

Dedicated to the memory of Russell Johnson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Caballero, R., Marín-Rubio, P. & Valero, J. Existence and Characterization of Attractors for a Nonlocal Reaction–Diffusion Equation with an Energy Functional. J Dyn Diff Equat (2021). https://doi.org/10.1007/s10884-020-09933-5

Download citation


  • Reaction–diffusion equations
  • Nonlocal equations
  • Global attractors
  • Multivalued dynamical systems
  • Structure of the attractor

Mathematics Subject Classification

  • 35B40
  • 35B41
  • 35B51
  • 35K55
  • 35K57