Random Attractor for Stochastic Hindmarsh–Rose Equations with Additive Noise

Abstract

For stochastic Hindmarsh–Rose equations with additive noises in the study of neurodynamics, the longtime and global pullback dynamics on a two-dimensional bounded domain is explored in this work. Using the additive transformation and by the sharp uniform estimates, we proved the pullback absorbing and the pullback asymptotically compact characteristics of the Hindmarsh–Rose random dynamical system in the \(L^2\) Hilbert space. It shows the existence of a random attractor for this random dynamical system.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Arnold, L.: Random Dynamical Systems. Springer, Berlin (1998)

    Google Scholar 

  2. 2.

    Bates, P.W., Lisei, H., Lu, K.: Attractors for stochastic lattice dynamical systems. Stoch. Dyn. 6, 1–21 (2006)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bates, P.W., Lu, K., Wang, B.: Random attractors for stochastic reaction-diffusion equations on unbounded domains. J. Differ. Equ. 246, 845–869 (2009)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bertram, R., Butte, M.J., Kiemel, T., Sherman, A.: Topologica and phenomenological classification of bursting oscillations. Bull. Math. Biol. 57, 413–439 (1995)

    Article  Google Scholar 

  5. 5.

    Buters, R.J., Rinzel, J., Smith, J.C.: Models respiratory rhythm generation in the pre-Bötzinger complex, I. Bursting pacemaker neurons. J. Neurophysiol. 81, 81–397 (1999)

    Google Scholar 

  6. 6.

    Chay, T.R., Keizer, J.: Minimal model for membrane oscillations in the pancreatic beta-cell. Biophysiol. J. 42, 181–189 (1983)

    Article  Google Scholar 

  7. 7.

    Chepyzhov, V.V., Vishik, M.I.: Attractors for Equations of Mathematical Physics, vol. 49. AMS Colloquium Publications, Providence (2002)

    Google Scholar 

  8. 8.

    Chueshov, I.: Monotone Random Systems Theory and Applications. Lecture Notes in Mathematics, vol. 1779. Springer, Berlin (2002)

    Google Scholar 

  9. 9.

    Cornelisse, L.N., Scheenen, W.J., Koopman, W.J., Roubos, E.W., Gielen, S.C.: Minimal model for intracellular calcium oscillations and electrical bursting in melanotrope cells of Xenopus Laevis. Neural Comput. 13, 113–137 (2000)

    Article  Google Scholar 

  10. 10.

    Crauel, H., Debusche, A., Flandoli, F.: Random attractors. J. Dyn. Differ. Equ. 9, 307–341 (1997)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Crauel, H., Flandoli, F.: Attractors for random dynamical systems. Probab. Theory Relat. Fields 100, 365–393 (1994)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Dhamala, M., Jirsa, V.K., Ding, M.: Transitions to synchrony in coupled bursting neurons. Phys. Rev. Lett. 92, 028101 (2004)

    Article  Google Scholar 

  13. 13.

    Efendiev, M., Zelik, S.: Upper and lower bounds for the Kolmogorov entropy of the attractor for an RDE in an unbounded domain. J. Dyn. Differ. Equ. 14, 369–403 (2002)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Ementrout, G.B., Terman, D.H.: Mathematical Foundations of Neurosciences. Springer, Berlin (2010)

    Google Scholar 

  15. 15.

    FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  Google Scholar 

  16. 16.

    Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature 206, 162–164 (1982)

    Article  Google Scholar 

  17. 17.

    Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first-order differential equations. Proc. R. Soc. Lond. Ser. B Biol. Sci. 221, 87–102 (1984)

    Article  Google Scholar 

  18. 18.

    Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. Ser. B 117, 500–544 (1952)

    Article  Google Scholar 

  19. 19.

    Innocenti, G., Genesio, R.: On the dynamics of chaotic spiking-bursting transition in the Hindmarsh–Rose neuron. Chaos 19, 023124 (2009)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Izhikecich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, Cambridge (2007)

    Google Scholar 

  21. 21.

    Ma, S.Q., Feng, Z., Lu, Q.: Dynamics and double Hopf bifurcations of the Rose–Hindmarsh model with time delay. Int. J. Bifurc. Chaos 19, 3733–3751 (2009)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Oksendal, B.: Stochastic Differential Equations, 6th edn. Springer, Berlin (2003)

    Google Scholar 

  23. 23.

    Phan, C.: Random attractor for stochastic Hindmarsh–Rose equations with multiplicative noise. Discret. Contin. Dyn. Syst. Ser. B. arXiv:1908.01220v2 (2019, to appear)

  24. 24.

    Phan, C., You, Y., Su, J.: Global attractors for Hindmarsh–Rose equations in neurodynamics. arXiv:1907.13225 (2019)

  25. 25.

    Rinzel, J.: A formal classification of bursting mechanism in excitable systems. Proc. Int. Congr. Math. 1, 1578–1593 (1987)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Rubin, J.: Bursting induced by excitatory synaptic coupling in nonidentical conditional relaxation oscillators or square-wave bursters. Phys. Rev. E 74, 021917 (2006)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Schenk-Hoppé, K.R.: Random attractors–general properties, existence and applications to stochastic bifurcation theory. Discret. Contin. Dyn. Syst. 4, 99–130 (1998)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Schmalfuss, B.: Backward cocycles and attractors of stochastic differential equations. In: International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractors Approximation and Global Behavior, Dresden, pp. 185–192 (1992)

  29. 29.

    Sell, G.R., You, Y.: Dynamics of Evolutionary Equations, Applied Mathematical Sciences, vol. 143. Springer, New York (2002)

    Google Scholar 

  30. 30.

    Shapiro, A., Curtu, R., Rinzel, J., Rubin, N.: Dynamical characteristics common to neuronal competition models. J. Neurophysiol. 97, 462–473 (2007)

    Article  Google Scholar 

  31. 31.

    Su, J., Perez-Gonzalez, H., He, M.: Regular bursting emerging from coupled chaotic neurons. Discret. Contin. Dyn. Syst. Supplement, 946–955 (2007)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Temam, R.: Infinite Dimensional Dynamical Systems in Mechanics anf Physics, 2nd edn. Springer, New York (2013)

    Google Scholar 

  33. 33.

    Terman, D.: Chaotic spikes arising from a model of bursting in excitable membrane. J. Appl. Math. 51, 1418–1450 (1991)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Wang, B.: Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems. J. Differ. Equ. 253, 1544–1583 (2012)

    MathSciNet  Article  Google Scholar 

  35. 35.

    Wang, B.: Random attractors for non-autonomous stochastic wave equations. Discret. Contin. Dyn. Syst. Ser. A 34, 269–300 (2014)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Wang, R., Wang, B.: Asymptotic behavior of non-autonomous fractional stochastic \(p\)-Laplacian equations. Comput. Math. Appl. (2019). https://doi.org/10.1016/j.camwa.2019.05.024

    MathSciNet  Article  MATH  Google Scholar 

  37. 37.

    Wang, Z.L., Shi, X.R.: Chaotic bursting lag synchronization of Hindmarsh-Rose system via a single controller. Appl. Math. Comput. 215, 1091–1097 (2009)

    MathSciNet  MATH  Google Scholar 

  38. 38.

    You, Y.: Global dynamics and robustness of reversible autocatalytic reaction-diffusion systems. Nonlinear Anal. Ser. A 75, 3049–3071 (2012)

    MathSciNet  Article  Google Scholar 

  39. 39.

    You, Y.: Random attractors and robustness for stochastic reversible reaction-diffusion systems. Discret. Contin. Dyn. Syst. Ser. A 34, 301–333 (2014)

    MathSciNet  Article  Google Scholar 

  40. 40.

    You, Y.: Random dynamics of stochastic reaction-diffusion systems with additive noise. J. Dyn. Differ. Equ. 29, 83–112 (2017)

    MathSciNet  Article  Google Scholar 

  41. 41.

    Zhang, F., Lubbe, A., Lu, Q., Su, J.: On bursting solutions near chaotic regimes in a neuron model, Discrete and Continuous Dynamical Systems. Ser. S 7, 1363–1383 (2014)

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuncheng You.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Phan, C., You, Y. Random Attractor for Stochastic Hindmarsh–Rose Equations with Additive Noise. J Dyn Diff Equat 33, 489–510 (2021). https://doi.org/10.1007/s10884-019-09816-4

Download citation

Keywords

  • Stochastic Hindmarsh–Rose equations
  • Additive noise
  • Random dynamical system
  • Random attractor
  • Pullback absorbing set
  • Pullback asymptotic compactness

Mathematics Subject Classification

  • Primary: 35B40
  • 35K55
  • 37L30
  • 37L55
  • 37N25
  • Secondary: 60H15
  • 92B20